SPILL PREVENTION CONTROL AND COUNTERMEASURES (SPCC) AND SPILL BILL PLAN

University of Minnesota-Landscape Arboretum
3765 Arboretum Dr, Chanhassen, MN 55317
The Arboretum features more than 1,215 acres of magnificent gardens, model landscapes, and natural areas - from woodlands and wetlands to prairie - with extensive collections of northern-hardy plants. As a premier northern garden, the Arboretum was borne out of the University of Minnesota Horticultural Research Center and established in 1958, with the Men's Garden Club of Minneapolis, Lake Minnetonka Garden Club, Minnesota State Horticultural Society and other community supporters credited with promoting the arboretum idea, raising funds and looking for a site, as a gift to the University of Minnesota. The University of Minnesota Landscape Arboretum is part of the College of Food, Agricultural and Natural Resource Sciences at the University of Minnesota.

The mission of the Minnesota Landscape Arboretum, as part of the University of Minnesota, is two-fold: To be a growing resource for horticultural information, plant conservation, research and education. To inspire and delight a growing visitorship with outstanding displays, collections and natural areas.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Plan Certifications</th>
<th>SPCC Cross Reference</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>112.3(d), 112.7</td>
<td>6</td>
</tr>
</tbody>
</table>

Part 1. Introduction

1.1 Plan Purpose
1.2 Plan Accessibility 112.3(e) 7
1.3 Spill History 114.4(a) 7
1.4 Responsible Parties and Plan Contact Information 112.7(a)(3) 7
1.5 Planning Team 112.7(a)(3), 112.7(f) 7

Part 2. Facility Description

2.1 Facility Location 112.7(a)(3) 10
2.2 Facility Drainage 112.8(b) 11
2.3 Facility Operations 112.8(c)(1) 11
2.4 Oil Storage Containers 112.7(c), 112.7(j), 112.8(c)(4) 12

Table 1. Regulated Container Details by Campus & Container Type

2.5 Security 112.7(g) 19
2.6 Substantial Harm Determination 112.20(e) 19

Part 3. Spill Prevention Measures

Table 2. Spill Potential for Oil Storage and Operations

3.1 Demonstration of Facility Practicability 112.7(d) 21
3.2 Facility Design Countermeasures 112.7(c), 112(c)(8) 21
3.3 Procedural Countermeasures 112.7(e), 112.7(h), 112.8(c)(6), 112.8(c)(10), 112.8(d) 22
3.4 Drainage from Diked Areas 112.8(c)(3) 23
3.5 Personnel Training 112.7(f) 24

Part 4. Contingency Plan for Spills

4.1 Containment and Cleanup 112.7(a)(4) 24
4.2 Reporting Requirements 112.7(a)(5), 112.7(j) 25
4.3 Disposal Requirements 25

Part 5. Documentation and Recordkeeping

5.1 Regulatory Notifications 112.7(j) 25
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Plan Certifications</th>
<th>SPCC Cross Reference</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>112.3(d), 112.7</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Part 1. Introduction

1.1 Plan Purpose 7
1.2 Plan Accessibility 7
1.3 Spill History 7
1.4 Responsible Parties and Plan Contact Information 7
1.5 Planning Team 7

Part 2. Facility Description

2.1 Facility Location 10
2.2 Facility Drainage 11
2.3 Facility Operations 11
2.4 Oil Storage Containers 12

Table 1. Regulated Container Details by Campus & Container Type

2.5 Security 19
2.6 Substantial Harm Determination 19

Part 3. Spill Prevention Measures

3.1 Demonstration of Facility Practicability 21
3.2 Facility Design Countermeasures 21
3.3 Procedural Countermeasures 22

Table 2. Spill Potential for Oil Storage and Operations

3.4 Drainage from Diked Areas 23
3.5 Personnel Training 24

Part 4. Contingency Plan for Spills

4.1 Containment and Cleanup 24
4.2 Reporting Requirements 25
4.3 Disposal Requirements 25

Part 5. Documentation and Recordkeeping

5.1 Regulatory Notifications 25
5.2 Recordkeeping

5.3 Plan Revisions

Table 3. Log of Plan Revisions

Tables
Table 1 Regulated Container Details
Table 2 Spill Potential for Oil Storage and Operations
Table 3 Log of SPCC Plan Revisions

Figures
Figure 1 Site Location Map
Figure 2 Arboretum Facility Layout and Location of Assets

Appendices
Appendix A Environmental Fact Sheet: “Responding to Spills and Releases”
Appendix B Spill Reporting Form
Appendix C Environmental Fact Sheet: “Management of Tanks and Containers”
Appendix D Environmental Fact Sheet: “Evaluation of Liquids in Secondary Containment or Other Sump Areas”
Appendix E Bulk Container Detail Sheets
Appendix F Hydraulic Equipment Detail Sheets
Appendix G Electrical Transformer Detail Sheets
Appendix H Certification of Substantial Harm Determination Form
Appendix I Plan Inspection Checklists
 - Monthly Tank/Container Inspection Form – Bulk Oil Containers
 - Annual OFE Inspection Form – Elevators and Transformers
Engineer's Certification

I hereby certify that I have examined the University of Minnesota Landscape Arboretum Facility and, being familiar with the provisions of 40 CFR, Part 112 and Minnesota Statutes, Chapter 115E, attest that this Plan has been prepared in accordance with good engineering practices.

Matthew L. Ledvina, PE
Registration Number: 19794
State: Minnesota

Date: 4/29/19

Certification and Management Approval

This document is intended to minimize the potential to adversely impact its environment and to attain/maintain compliance with 40 CFR 112 and Minn. Stat. Chapter 115E.

Full approval is extended by Management at a level with authority to commit the necessary resources.

Peter C. Moe
Peter Moe, University of Minnesota Landscape Arboretum Director of Operations and Research

Date: 04/29/2019

Katharine Bonneson, Assistant Vice President
University Health and Safety

Date: 5-3-19
Part 1. Introduction

1.1 Plan Purpose
The Landscape Arboretum stores and uses oil in support of operations and maintenance of the campus. This combined Spill Prevention Control and Countermeasures (SPCC) and Spill Bill Plan (Plan) is developed to provide Landscape Arboretum personnel with a document that outlines the steps for preventing environmental releases of oil products and to ensure the safety of personnel, the community, and the environment should a release occur.

For the purposes of SPCC planning, facilities with an aggregate capacity of more than 1,320 gallons of oil contained in tanks and containers more than 55 gallons in size are required to prepare and implement a Plan. While Underground Storage Tanks (USTs) regulated by Minn. R. 7150 are not subject to inclusion in the SPCC Plan if the total buried capacity is less than 42,000 gallons, USTs at this Facility are included in this Plan for completeness in describing the totality of tanks and containers with oil at the Facility, as well as to comply with the requirements of the State spill planning requirements.

This document satisfies the requirements of the Federal Oil Pollution Prevention Regulations (40 CFR, Part 112) and the Prevention and Response (P&R) Plan requirements of the Oil and Hazardous Substance Discharge Preparedness Regulations (Minnesota Statutes, Chapter 115 E), also known as the Minnesota Spill Bill.

1.2 Plan Accessibility (112.3(e))
The combined SPCC and Spill Bill Plan (Plan) is accessible at the Facility and maintained in the office of the Maintenance Director. The current version of this Plan is maintained electronically on the DEHS webpage site at: https://dehs.umn.edu/environmental-compliance-forms-and-tools-0.

1.3 Spill History (114.4(a))
Although the requirement to provide a Spill History was eliminated with the 2002 revision of the SPCC rule, past spill response and control measure are reviewed to determine if they are a predictor for future spill events. At the Landscape Arboretum, there have been no spills of greater than 42 gallons for the three year period prior to development of this Plan. Records of spill events will be reviewed prior to any Plan revision to determine the need to modify the Plan in response to a spill.

1.4 Responsible Parties and Plan Contact Information (112.7(a)(3))

Facility Owner and Operator
University of Minnesota, Landscape Arboretum
3765 Arboretum Dr, Chanhassen, MN 55317

Plan Contact
Maury Giesen, Maintenance Director
(612) 301-1253 (612) 282-9025 (cell)

1.5 Planning Team (112.7(a)(3), 112.7(f))
Plan compliance is implemented by the Planning Team, which consists of centralized and site-located staff, as well as operational staff responsible for day-to-day activities in their respective operational areas. It is the responsibility of each group, as defined by this section, to manage regulated containers within their respective group’s geographic area or scope of work. The names
of key personnel, office and cell telephone numbers are listed as follows, along with responsibilities for each team member.

Facility Director

Peter Moe, Director of Operations and Research (612) 301-1246

Responsibilities:

- Signatory authority.
- Review and approve all stages of plan development and implementation.
- Direct identified personnel to implement this Plan and the proper implementation of related control measures.
- Direct the training of identified personnel.
- Direct inspections to be completed to ensure compliance with this Plan.
- Direct timely preventive maintenance and good housekeeping procedures be carried out.
- Direct update of this Plan, as needed.
- Direct maintenance of Plan records, including inspection and incident records related to this plan and tanks identified in this plan.

Environmental Health and Safety Staff

Julianne Rantala, Environmental Compliance Specialist, UMTC (651) 626-7957

Responsibilities:

- Emergency contact (Campus EHS staff)
- Review and approve all stages of plan development and implementation.
- Identify appropriate personnel and respective training needs to effectively implement this Plan and the proper implementation of related control measures.
- Implement training of identified personnel.
- Monitor inspections and compile inspection records
- Monitor compliance with the provisions of this Plan, identify non-compliance and corrective actions required. Coordinate completion of corrective actions, notifying management as necessary to direct actions.
- Ensure update of this Plan, as needed.
- Ensure maintenance of Plan records, including inspection and incident records related to this plan and regulated containers identified in this plan.

Maintenance

Maury Giesen, Facilities Maintenance Director (612) 301-1253

Responsibilities:

- Emergency contact for issues at the Facility.
- Contain and cleanup spills of significant materials.
- Attend training as directed by management.
- Practice good housekeeping and implement other control measures, as directed by management and as specified in this Plan.
- Conduct inspections required by this Plan, as directed by management.
- Initiate investigation and/or corrective action/s related to inspections, test results and other information pertaining to the containers and tanks subject to this Plan.
- Initiate the spill response and Spill Reporting Procedure, as necessary. The most recent version of this procedure is maintained electronically on the University EHS webpage at: https://dehs.umn.edu/environmental-compliance-forms-and-tools-
- Identify appropriate and timely updates of the Plan, including any site diagrams, maps or attachments, and facilitate update by Environmental Compliance staff.
Service Area
Maury Giesen, Facilities Maintenance Director (612) 301-1253

Responsibilities:
- Emergency contact for issues at the Service Area.
- Contain and cleanup spills of significant materials.
- Attend training as directed by management.
- Practice good housekeeping and implement other control measures, as directed by management and as specified in this Plan.
- Conduct inspections required by this Plan, as directed by management, for operational area of responsibility.
- Initiate investigation and/or corrective action/s related to inspections, test results and other information pertaining to the containers and tanks subject to this Plan.
- Initiate the spill response and Spill Reporting Procedure, as necessary. The most recent version of this procedure is maintained electronically on the University EHS webpage at: http://www.dehs.umn.edu/comp_sp.htm.
- Identify appropriate and timely updates of the Plan, including any site diagrams, maps or attachments, and facilitate update by Environmental Compliance staff.

Horticultural Research Center Area
Maury Giesen, Facilities Maintenance Director (612) 301-1253

Responsibilities:
- Emergency contact for issues at the Horticultural Research Center.
- Contain and cleanup spills of significant materials.
- Attend training as directed by management.
- Practice good housekeeping and implement other control measures, as directed by management and as specified in this Plan.
- Conduct inspections required by this Plan, as directed by management, for operational area of responsibility.
- Initiate investigation and/or corrective action/s related to inspections, test results and other information pertaining to the containers and tanks subject to this Plan.
- Initiate the spill response and Spill Reporting Procedure, as necessary. The most recent version of this procedure is maintained electronically on the University EHS webpage at: https://dehs.umn.edu/environmental-compliance-forms-and-tools-0.

Facilities Management: Transformers and Generators
Maury Giesen, Facilities Maintenance Director (612) 301-1253

Responsibilities:
- Emergency contact for issues with transformers throughout the Landscape Arboretum.
- Contain and cleanup spills of significant materials.
- Attend training as directed by management.
- Practice good housekeeping and implement other control measures, as directed by management and as specified in this Plan.
- Conduct inspections required by this Plan, as directed by management, for operational area of responsibility.
- Initiate investigation and/or corrective action/s related to inspections, test results and other information pertaining to the containers and tanks subject to this Plan.
Initiate the spill response and Spill Reporting Procedure, as necessary. The most recent version of this procedure is maintained electronically on the University EHS webpage at: https://dehs.umn.edu/environmental-compliance-forms-and-tools-0.

- Identify appropriate and timely updates of the Plan, including any site diagrams, maps or attachments, and facilitate update by Environmental Compliance staff.

Facilities Management: Hydraulic Elevator Equipment

Maury Giesen, Facilities Maintenance Director
ThyssenKrupp (contract services)

(612) 301-1253

Responsibilities:

- Emergency contact for issues with hydraulic elevator equipment throughout the Landscape Arboretum.
- Contain and cleanup spills of significant materials.
- Attend training as directed by management.
- Practice good housekeeping and implement other control measures, as directed by management and as specified in this Plan.
- Conduct inspections required by this Plan, as directed by management, for operational area of responsibility.
- Initiate investigation and/or corrective action/s related to inspections, test results and other information pertaining to the containers subject to this Plan.
- Initiate the spill response and Spill Reporting Procedure, as necessary. The most recent version of this procedure is maintained electronically on the University EHS webpage at: https://dehs.umn.edu/environmental-compliance-forms-and-tools-0.
- Identify appropriate and timely updates of the Plan, including any site diagrams, maps or attachments, and facilitate update by Environmental Compliance staff.

Part 2. Facility Description

The Landscape Arboretum features more than 1,215 acres of magnificent gardens, model landscapes, and natural areas - from woodlands and wetlands to prairie - with extensive collections of northern-hardy plants. As a premier northern garden, the Arboretum was born out of the University of Minnesota Horticultural Research Center and established in 1958, with the Men's Garden Club of Minneapolis, Lake Minnetonka Garden Club, Minnesota State Horticultural Society and other community supporters credited with promoting the arboretum idea, raising funds and looking for a site, as a gift to the University of Minnesota. The University of Minnesota Landscape Arboretum is part of the College of Food, Agricultural and Natural Resource Sciences at the University of Minnesota.

As part of operations and maintenance of the Landscape Arboretum, the Facility handles and stores significant volumes of oil/petroleum products used for vehicle fueling, maintenance of vehicles, hydraulic elevators and transformers. These categories and specific locations are discussed in detail in Part 3 of this Plan.

2.1 Facility Location (112.7(a)(3))

The Facility is located in portions of Sections 7-9 and 16-18, Township 1116N, Range 23W, as indicated on the USGS quadrangle map, Figure 1. The coordinates of the main Facility operations area are Latitude 44.862017, Longitude -93.616143 and the main address of the Landscape Arboretum is 3675 Arboretum Drive, Chaska, MN 55318. The Facility consists of multiple parcels, some of which are adjacent and others which are not contiguous.

The locations of regulated oil containers and equipment are shown on Figure 2 and on the details maps of the main Facility areas as presented in the Appendices.
2.2 Facility Drainage (112.8(b))
This description is provided in accordance with 40 CFR 112.7(e)(1). The elevation of the Facility ranges from approximately 900 to 1050 feet above sea level (MSL). The majority of the precipitation that falls on the Landscape Arboretum evapotranspires, evaporates and/or infiltrates into the soil for pervious and vegetated areas. Numerous wetlands are located within the Landscape Arboretum property and receive runoff from adjacent improved areas.

The majority of storm sewer infrastructure is associated with roadways and parking lots where numerous catch basins and underground piping direct storm water to surface waters throughout the Facility area. Storm sewers, where present at the Facility, are indicated on Figure 2.

2.3 Facility Operations (112.8(c)(1))
The Facility has a variety of hours of operation depending on the specific area. Administrative hours are typically 7:00 am to 4:30 pm, Monday through Friday while the visitor operations are daily from 8:00 am to 8:00 pm with seasonal variation. The major operations which involve the active management of oil in regulated quantities include the Visitor Center Area, Service Area and Horticultural Research Center Area.

Visitor Center Area
The main buildings in the Visitor Center Area include the Oswald Visitor Center and Snyder Education and Conservatory. There are two hydraulic elevators in the Oswald Visitor Center and one hydraulic elevator in the Snyder Education and Conservatory. Transformers are located on the north and south sides of the Oswald Visitor Center. A large “peak-shaving” generator is located to the west of the Oswald Visitor Center and adjacent to the Frog Hollow classroom building. The locations of the hydraulic elevators, transformers and the generator associated with the Visitor Center Area, are listed in Table 1 and depicted in Figure 2.

Service Area
The Facility conducts fueling and maintenance of off-road and on-road Landscape Arboretum vehicles and equipment in the Service Area located in the south-central portion of the Site. There are two above-ground storage tanks (ASTs) and associated dispensers for vehicle fueling. Fueling procedures are described in subsequent sections.

Maintenance of Landscape Arboretum vehicle and equipment is performed at the Service Area shop. Maintenance of large equipment may be completed at various locations on the Facility and at offsite locations by contract vendors. Equipment washing is done on a limited basis; detergents are not used in washing operations. There are new and used oil ASTs, as well as two drum storage areas associated with the Service Area. The shop (Bldg 22-010) contains a floor trench drain which is routed to an oil-water separator and then to a sanitary septic system. The locations of the ASTs as well as the drum storage areas associated with the Service Area are listed in Table 1 and depicted in Figure 2.

The Landscape Arboretum utilizes a contract vendor for delivery of diesel fuel and new oil products on an as-needed basis; used oil is also removed from the Facility by a contract vendor.

Horticultural Research Center Area
The Facility conducts fueling and maintenance of off-road and on-road for vehicles utilized by the Horticultural Research Center (HRC). There are two above-ground storage tanks
(ASTs) and associated dispensers for vehicle fueling. Fueling procedures are described in subsequent sections.

Maintenance of HRC vehicles and equipment is performed at the Farm Shop (Bldg 21-029). Maintenance of large equipment is completed at various locations onsite and at offsite locations by contract vendors. Equipment washing is done on a limited basis; detergents are not used in washing operations. There is a used oil AST associated with the Farm Shop. The Farm Shop does not contain a floor trench drain or any drains in the vicinity of the AST. The locations of the ASTs as well as Transformer TR006 (Bldg 021-011) are listed in Table 1 and depicted in Figure 2.

HRC utilizes a contract vendor for delivery of diesel fuel and new oil products on an as-needed basis; used oil is also removed from the Facility by a contract vendor.

2.4 Oil Storage Containers (112.7(c), 112.7(j) and 112.8(c)(4))

All fixed and mobile containers that have a capacity of 55 gallons and larger are subject to the requirements of the SPCC Plan, including containers associated with oil-filled equipment. The DEHS Fact Sheet: “Management of Tanks and Containers” (Appendix C) provides guidance on best practices for SPCC regulated containers. Locations of oil products and spill response equipment and materials are shown on Figure 2.

All oil storage containers are used in accordance with the implied intent of the manufacturers and are fully compatible with the material they hold and the environmental conditions to which they can be reasonably expected to be subjected. None of the containers are used to store material at greater than atmospheric pressure.

Total regulated storage capacity of oil products at the Facility is calculated to be approximately 7,100 gallons. Analysis of the potential container and equipment failures that could result in a spill at the Facility is presented in Part 3 of this Plan.

Minnesota Rules chapter 7151 and chapter 7150 stipulate the requirements for management of above- and underground storage tanks (ASTs and USTs) in Minnesota, respectively. The Minnesota Pollution Control Agency (MPCA) requires the registration of tanks ASTs and USTs greater than 500 gallons in size. ASTs must be labeled indicating the substance stored and the tank capacity. The ASTs located at the Facility are registered, and are otherwise managed in accordance with the referenced rules.

Bulk Oil Containers

Bulk containers are required to be located inside a secondary containment dike capable of containing a volume of liquid of the tank capacity plus sufficient freeboard. Alternately, bulk containers are double-walled construction. The storage capacity and contents of bulk tanks are shown in Table 1, by operational responsibility and locations are indicated on Figure 2.

Bulk oil containers include fuels and new/used oil ASTs located at the Service Area and the HRC Area. The stationary generator, GEN001, which uses diesel fuel, is double-walled. The two drum storage areas are located at the Service Area and these containers have secondary containment spill pallets. The drum storage areas are generally used to store lubricants, used oil filters and oil sorbents.

Appendix E consists of Bulk Container Detail Sheets for each location identified in Table 1 and shown on Figure 2. The sheets provide the physical details, including a photo, site detail map, containment equipment and drainage surface water flow directions (where applicable) for each regulated bulk oil container.
Hydraulic Equipment
There are three active hydraulic elevators in two Facility buildings. Each elevator typically consists of a storage container, a hydraulic pump, hydraulic oil delivery lines, and an elevator pit that contains the elevator's hydraulic ram. Each of the storage containers and pumps are located inside elevator equipment storage rooms. Leaks from these containers or pumps typically would result in hydraulic oil pooling on the floor of the room, the elevator pit or the adjacent hallways.

In general, major leaks for the hydraulic reservoirs will be confined to the floor of the rooms or elevator pits. In the standard operation of hydraulic elevators, there is a small amount of oil that gets past the seal located at the top of the hydraulic cylinder. This oil drains back into a bucket or to a scavenger pump. If the bucket overflows or the scavenger pump fails, this oil ends up on the pit floor and is cleaned up using floor oil dry or absorbent pads.

The storage capacities of hydraulic equipment reservoirs are shown in Table 1. Appendix F consists of a Hydraulic Elevator Detail Sheet for each location identified in Table 1 and shown on Figure 2, and provides the physical details, including a photo, site detail map and drainage flow directions (where appropriate).

Responsibility for operations and maintenance of hydraulic elevators is delegated to Landscape Arboretum contractor, ThyssenKrup Elevator Service. The contractor is required to report spills of oil to the Landscape Arboretum Maintenance Director which may be observed during service and repair activities. In addition, the contractor is required to complete the relevant inspection checklist contained in Appendix I on an annual basis. Completed inspections checklists are provided to the Landscape Arboretum Maintenance Director for review and corrective action follow-up, as needed.

Transformers
There are six oil-filled transformers at the Landscape Arboretum Facility which are regulated. All of the transformers are located outdoors, primarily adjacent to buildings as indicated on Figure 2.

The storage capacities for transformers are shown in Table 1. Appendix G consists of an Electrical Transformer Detail Sheet for each location identified in Table 1 and shown on Figure 2, and provides the physical details, including a photo, site detail map, containment equipment and surface water drainage flow directions for each container. The lead electrician group is responsible for operation and maintenance of this equipment, as well as for performing annual inspections. The lead electrician is required to report spills of oil to the Landscape Arboretum Maintenance Director, which are observed during service and repair activities. Inspection checklist forms, completed on an annual basis, are contained in Appendix I.

Underground Storage Tanks
There are no USTs or partially buried oil storage tanks at the Facility.
<table>
<thead>
<tr>
<th>Container Type</th>
<th>SPCC ID, UMN Asset ID</th>
<th>Location (Bldg No and Room/Details)</th>
<th>Location Coordinates (x,y)</th>
<th>Indoors?</th>
<th>Container Contents</th>
<th>Container Capacity (gal)</th>
<th>Container Material</th>
<th>Tank Leak Detect Type</th>
<th>Containment Type</th>
<th>Overfill Protect Type</th>
<th>Drains in Area</th>
<th>Oil Flow Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST</td>
<td>AST008 (A),</td>
<td>21-029 Farm Shop, North Side</td>
<td>-10423482.2289, 5600803.4663000004</td>
<td>No</td>
<td>Diesel_Fuel Oil No 2</td>
<td>280</td>
<td>Carbon Steel, Double Walled</td>
<td>Inventory Control/Reconciliation, Double-Walled Tank Tank Level Gauge</td>
<td>No inlet-impermeable surface</td>
<td>Flow would be to concrete and then sheet flow to north into grassy area.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>AST009 (A),</td>
<td>21-029 Farm Shop, North Side</td>
<td>-10423485.5684999999, 5600803.1520999903</td>
<td>No</td>
<td>Gasoline, Unleaded</td>
<td>525</td>
<td>Carbon Steel, Double Walled</td>
<td>Inventory Control/Reconciliation, Double-Walled Tank Tank Level Gauge</td>
<td>No inlet-impermeable surface</td>
<td>Flow would be to concrete and then sheet flow to north into grassy area.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>AST010 (A),</td>
<td>21-029 Farm Shop, Main Shop</td>
<td>-10423482.7854999999, 5600844.4612999996</td>
<td>Yes</td>
<td>Oils and Lubricants, Used</td>
<td>70</td>
<td>Plastic</td>
<td>Visual Monitoring, Double-Walled Tank Tank Level Gauge</td>
<td>No inlet-impermeable surface</td>
<td>Flow would be onto concrete floor, and then south out the garage door.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Reservoir -</td>
<td>TR006 (A),</td>
<td>21-011 Old Garage, South Side</td>
<td>-10423486.793, 5600748.1781999897</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>340</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None None</td>
<td>No inlet-impermeable surface</td>
<td>No drains in area; flow would be west 20 feet to grassed area and then to driveway.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>AST001 (A),</td>
<td>22-033 Vehicle Maintenance Shop, Northeast Side</td>
<td>-10421792.1764, 5598783.0023999996</td>
<td>No</td>
<td>Diesel_Fuel Oil No 2</td>
<td>280</td>
<td>Carbon Steel, Double Walled</td>
<td>Inventory Control/Reconciliation, Double-Walled Tank Tank Level Gauge</td>
<td>No inlet-impermeable surface</td>
<td>No storm sewers in immediate area. Flow would be onto concrete and then easterly 50 feet to drainage ditch.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Container Type</td>
<td>SPCC ID, UMN Asset ID</td>
<td>Location (Bldg No and Room/Details)</td>
<td>Location Coordinates (x,y)</td>
<td>Indoors?</td>
<td>Container Contents</td>
<td>Container Capacity (gal)</td>
<td>Container Material</td>
<td>Tank Leak Detect Type</td>
<td>Containment Type</td>
<td>Overfill Protect Type</td>
<td>Drains in Area</td>
<td>Oil Flow Direction</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------------</td>
<td>-------------------------------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>AST AST002 (A),</td>
<td>22-033 Vehicle Maintenance Shop, Northeast Side</td>
<td>-10421795.961300001, 5598786.1429999899</td>
<td>No</td>
<td>Gasoline, Unleaded</td>
<td>525</td>
<td>Carbon Steel, Double Walled</td>
<td>Automatic Tank Gauging, Double-Walled Tank Tank Level Gauge</td>
<td>No inlet-impermeable surface</td>
<td>No storm sewers in immediate area. Flow would be onto concrete and then easterly 50 feet to drainage ditch.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST AST003 (A),</td>
<td>22-033 Vehicle Maintenance Shop, Main Shop</td>
<td>-10421858.188899999, 5598756.46369999</td>
<td>Yes</td>
<td>Oils and Lubricants, Unused</td>
<td>65</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Spill Pallet Tank Level Gauge</td>
<td>Sanitary Inlet-impermeable surface</td>
<td>Flow would be southerly 20 feet to trench drain, then to oil/water separator and septic system.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST AST004 (A),</td>
<td>22-033 Vehicle Maintenance Shop, Main Shop</td>
<td>-10421858.188899999, 5598756.46369999</td>
<td>Yes</td>
<td>Oils and Lubricants, Unused</td>
<td>65</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Spill Pallet Tank Level Gauge</td>
<td>Sanitary Inlet-impermeable surface</td>
<td>Flow would be southerly 20 feet to trench drain, then to oil/water separator and septic system.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST AST005 (A),</td>
<td>22-033 Vehicle Maintenance Shop, Main Shop</td>
<td>-10421858.188899999, 5598756.46369999</td>
<td>Yes</td>
<td>Oils and Lubricants, Unused</td>
<td>65</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Spill Pallet Tank Level Gauge</td>
<td>Sanitary Inlet-impermeable surface</td>
<td>Flow would be southerly 20 feet to trench drain, then to oil/water separator and septic system.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST AST006 (A),</td>
<td>22-033 Vehicle Maintenance Shop, Main Shop</td>
<td>-10421856.741699999, 5598763.0591000002</td>
<td>Yes</td>
<td>Oils and Lubricants, Used</td>
<td>500</td>
<td>Carbon Steel, Double Walled</td>
<td>Interstitial Monitoring, Double-Walled Tank Tank Level Gauge</td>
<td>Sanitary Inlet-impermeable surface</td>
<td>Flow would be southerly 20 feet to trench drain, then to oil/water separator and septic system.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrel DS001 (A),</td>
<td>22-033 Vehicle Maintenance Shop, None</td>
<td>-10421853.402100001, 5598756.6206999999</td>
<td>Yes</td>
<td>Oils and Lubricants, Unused</td>
<td>220</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Spill Pallet</td>
<td>Sanitary Inlet-impermeable surface</td>
<td>Flow would be southerly 30 feet to trench drain, then to oil/water separator and septic system.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Container Type</td>
<td>SPCC ID, UMN Asset ID</td>
<td>Location (Bldg No and Room/Details)</td>
<td>Location Coordinates (x,y)</td>
<td>Indoors?</td>
<td>Container Contents</td>
<td>Container Capacity (gal)</td>
<td>Container Material</td>
<td>Tank Leak Detect Type</td>
<td>Containment Type</td>
<td>Overfill Protect Type</td>
<td>Drains in Area</td>
<td>Oil Flow Direction</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------</td>
<td>-------------------------------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Barrel</td>
<td>DS002 (A),</td>
<td>22-033 Vehicle Maintenance Shop, None</td>
<td>-10421852.1776, 5598758.5050999904</td>
<td>Yes</td>
<td>Oils and Lubricants, Used</td>
<td>220</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Spill Pallet</td>
<td>None</td>
<td>Sanitary inlet-impermeable surface</td>
<td>Flow would be southerly 30 feet to trench drain, then to oil/water separator and septic system.</td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>GD001 (A),</td>
<td>22-054 The Oswald Visitor Center, Loading Dock</td>
<td>-10421345.005999990, 5599904.4494000003</td>
<td>No</td>
<td>Cooking Oil, Used</td>
<td>175</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>Storm inlet-impermeable surface</td>
<td>None</td>
<td>Drainage from loading dock area easterly to storm drain approximately 40' away; two additional inlets near grease dumpster.</td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>GEN001 (A),</td>
<td>22-005 Frog hollow Classroom, East Side</td>
<td>-10421381.2962, 5599967.89899999</td>
<td>No</td>
<td>Diesel Fuel_Fuel Oil No 2</td>
<td>2400</td>
<td>Carbon Steel, Double Walled</td>
<td>Automatic Tank Gauging, Double-Walled Tank, Automatic Shut-off, Level Gauge/Sensor</td>
<td>No inlet-impermeable surface</td>
<td>No storm sewers in immediate area. Flow would be onto concrete, and then west to parking lot and grassy area.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reservoir - Elevator</td>
<td>HE001 (A),</td>
<td>22-054 The Oswald Visitor Center, 112</td>
<td>-10421326.0817000001, 5599839.4296000004</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>107</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>No inlet-impermeable surface</td>
<td>Flow would be to concrete floor of mechanical room.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reservoir - Elevator</td>
<td>HE002 (A),</td>
<td>22-054 The Oswald Visitor Center, 112</td>
<td>-10421326.0817000001, 5599839.4296000004</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>131</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>No inlet-impermeable surface</td>
<td>Flow would be to concrete floor of mechanical room.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Container Type</td>
<td>SPCC ID, UMN Asset ID</td>
<td>Location (Bldg No and Room/Details)</td>
<td>Location Coordinates (x,y)</td>
<td>Indoors?</td>
<td>Container Contents</td>
<td>Container Capacity (gal)</td>
<td>Container Material</td>
<td>Tank Leak Detect Type</td>
<td>Containment Type</td>
<td>Overfill Protect Type</td>
<td>Drains in Area</td>
<td>Oil Flow Direction</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Reservoir - Elevator</td>
<td>HE003 (A), 22-012 Snyder Education And Conservatory, 10</td>
<td>-10421152.479699999, 5599747.8686999902</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>107</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>Tank Level Gauge</td>
<td>No inlet-impermeable surface</td>
<td>Flow would be to concrete floor of mechanical room.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reservoir - Transformer</td>
<td>TR001 (A), 22-054 The Oswald Visitor Center, Loading Dock</td>
<td>-10421343.335200001, 5599884.5036000004</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>277</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>No drains in area; flow would be west to landscaped area.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reservoir - Transformer</td>
<td>TR002 (A), 22-054 The Oswald Visitor Center, South Side</td>
<td>-10421345.005999999, 5599904.4494000003</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>108</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>No drains in area; flow would be south to landscaped area.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reservoir - Transformer</td>
<td>TR003 (A), 22-031 Learning Center, Northeast Side</td>
<td>-10421616.548699999, 5600261.878499996</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>233</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>None</td>
<td>Storm inlet-impermeable surface</td>
<td>No drains in area; flow would be to south landscaped areas and then south over parking lot.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reservoir - Transformer</td>
<td>TR004 (A), 22-004 Ordway Picnic Shelter, Near irrigation pump for Green Heron Pond</td>
<td>-10421264.9873, 5599308.7664000001</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>122</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>No drains in area, but would flow east overland 50 feet to Green Heron Pond.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reservoir - Transformer</td>
<td>TR005 (A), 22-062 Bee Discovery, Southwest Side</td>
<td>-10420115.063999999, 5598823.2255999902</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>134</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>No drains in area; flow would be north to grassed area.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Container Type</td>
<td>SPCC ID, UMN Asset ID</td>
<td>Location (Bldg No and Room/Details)</td>
<td>Location Coordinates (x,y)</td>
<td>Indoors?</td>
<td>Container Contents</td>
<td>Container Capacity (gal)</td>
<td>Container Material</td>
<td>Tank Leak Detect Type</td>
<td>Containment Type</td>
<td>Overfill Protect Type</td>
<td>Drains in Area</td>
<td>Oil Flow Direction</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>----------------------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.5 **Security (112.7(g))**

The Facility is illuminated by lights in the evening and is attended by Site personnel during operating hours. Landscape Arboretum security personnel conduct surveillance rounds during operating hours and part-time during evening/weekend hours. The City of Chaska Police Department and Fire Department (911) are responsible for primary emergency response around the clock.

Operations of vendors related to oil transfers are done under the supervision of Landscape Arboretum personnel in most cases, except when the driver has been previously instructed in safe dispensing and delivery techniques. All contractors are required to follow local, state, and federal requirements during unloading operations of oil.

The Facility is not completely fenced as required by provisions of the SPCC rule. The Facility operations and equipment provide "Equivalent Environmental Protection" to deter acts of vandalism or unauthorized access. This includes:

- Building security, topography and partial fencing for the Facility prevents vehicle access for most regulated oil containers.
- Access to operational components for regulated oil containers is restricted. Equipment cannot be operated without electrical power. This equipment is secured during non-operational hours.
- The Facility has night-time security lighting at nearly all oil storage locations to discourage unauthorized access.
- Security cameras are positioned near some buildings to enable remote monitoring of the Facility.
- Landscape Arboretum security personnel conduct surveillance rounds on a part-time basis.
- The City of Chaska provides emergency response around the clock.

The Facility does not have master flow valves for oil materials. All primary electrical controls are within secure areas when the Facility is unattended and in sight of Landscape Arboretum personnel during operating hours. There are no out-of-service pipelines at the Facility.

2.6 **Substantial Harm Determination (112.20(e))**

The Oil Pollution Act of 1990 requires additional information and submission of the SPCC Plan to the EPA Regional Administrator if the facility could reasonably be expected to cause "substantial harm" to the environment by discharging oil into navigable water. The Facility does not pose "substantial harm" and therefore is not subject to this part of the Rule. A copy of the completed Certification of Substantial Harm Determination Form is included as Appendix H.
Part 3. Spill Prevention Measures

The Facility is designed, operated, and maintained to prevent spills, as documented in this section. The locations for spill cleanup equipment and materials are situated throughout the Landscape Arboretum in critical locations, such as research areas, garages and other locations where hazardous materials may be present.

Table 2 outlines the spill potential for the regulated containers subject to planning. Listed is the potential equipment failure event, spill description, volume potentially released and the rate of release as required by 40 CFR 112.7(b).

Table 2. Spill Potential for Oil Storage and Operations (112.7(b))

<table>
<thead>
<tr>
<th>Source or Potential Event</th>
<th>Maximum Potential Amount</th>
<th>Spill Direction</th>
<th>Spill Rate</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Containers and Fueling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure of Bulk Container</td>
<td>2,400 gallons</td>
<td>To secondary containment, then floor of building or outdoor paved surface.</td>
<td>Gradual to Instantaneous</td>
<td>Secondary containment. Spill kit materials will be used to contain spill</td>
</tr>
<tr>
<td>Failure of 55 gallon drum</td>
<td>55 gallons</td>
<td>To spill pallet and then floor of building.</td>
<td>Gradual to Instantaneous</td>
<td>Secondary containment. Spill kit materials will be used to contain spill inside building.</td>
</tr>
<tr>
<td>Spill of 55 gallon drum during transfer operations or truck loading</td>
<td>55 gallons</td>
<td>Directly to floor of building.</td>
<td>Gradual to Instantaneous</td>
<td>Spill kit materials will be used to intercept spill</td>
</tr>
<tr>
<td>Truck transfer operations at AST fill point</td>
<td>50 gallons</td>
<td>To secondary containment, then floor of building or outdoor paved surface. (max. assumes 100 gpm for 30 seconds).</td>
<td>Gradual to near instantaneous</td>
<td>Attended by personnel. Secondary containment. Spill kit materials will be used to contain spill inside building.</td>
</tr>
<tr>
<td>Truck transfer operations at used-oil AST</td>
<td>25 gallons</td>
<td>To paved surface and then easterly over impervious surface. (max. assumes 50 gpm for 30 seconds).</td>
<td>Gradual to near instantaneous</td>
<td>Attended by personnel. Spill kit materials will be used to intercept spill</td>
</tr>
<tr>
<td>Spill during transfer of used oil to used oil AST</td>
<td>30 gallons</td>
<td>To floor of HRC farm shop or Service Area Shop Garage.</td>
<td>Gradual to Instantaneous</td>
<td>Attended by personnel. Spill kit materials will be used to intercept spill</td>
</tr>
<tr>
<td>Equipment Fueling Station</td>
<td>25 gallons</td>
<td>To paved surface in vicinity of dispenser (maximum assumes 50 gpm for 30 seconds).</td>
<td>Gradual to near instantaneous</td>
<td>Attended by personnel. Spill kit materials will be used to intercept spill</td>
</tr>
<tr>
<td>Fuel delivery for AST</td>
<td>50 gallons</td>
<td>To asphalt surface in vicinity of dispenser (maximum assumes</td>
<td>Gradual to near instantaneous</td>
<td>Attended by personnel. Spill kit materials will be used to intercept spill</td>
</tr>
</tbody>
</table>
Oil-Filled Equipment (OFE)

<table>
<thead>
<tr>
<th>Source or Potential Event</th>
<th>Maximum Potential Amount</th>
<th>Spill Direction</th>
<th>Spill Rate</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure of indoor OFE container</td>
<td>131 gallons</td>
<td>To floor of electrical or elevator room.</td>
<td>Gradual to Instantaneous</td>
<td>Spill kit materials will be used to contain spill inside building.</td>
</tr>
<tr>
<td>Failure of outdoor transformer</td>
<td>340 gallons</td>
<td>To ground surface in the vicinity of container.</td>
<td>Gradual to Instantaneous</td>
<td>Spill kit materials will be mobilized to area and used to contain spill in the vicinity of the transformer.</td>
</tr>
</tbody>
</table>

3.1 **Demonstration of Facility Practicability (112.7(d))**

The Environmental Compliance Specialist, in accordance with 40 CFR 112.7(d), that the use of containment and diversionary structures or readily available equipment to prevent discharged oil products from reaching navigable waters is practical and effective for this Facility.

3.2 **Facility Design Countermeasures (112.7(c), 112.8(c))**

Spill Prediction

Table 2 and details for each regulated container (Appendices E, F and G), provide an assessment of potential scope for oil releases and a prediction for the direction of the spill. The highest potential for a spill event is associated with bulk transfer operations of new oil, used oils and fuels. Oils and fuels are brought to the Facility by a number of contract vendors for the Landscape Arboretum. For tank truck deliveries, spills can be contained in the immediate hard surface vicinity of the transfer connections and recovered with spill control equipment and supplies that are available adjacent to the ASTs. For a major release, a spill would pool in low spots within the paved traffic and landscaped yard areas. In the event of a spill, temporary dikes or absorbent booms will be used to prevent the movement of oil at the location of the spill.

Valves and Piping

ASTs and piping are discussed in the following sections. Aboveground oil piping associated with regulated oil storage is adequately supported and insulated, where appropriate. Aboveground pipes, pipe joints and valves are inspected regularly for leaks. Aboveground oil piping at the Facility is not in danger from impact by vehicle traffic. Liquids in secondary containment areas are subject to a visual inspection, and contaminant testing, as described by the DEHS Environmental Fact Sheet: Evaluation of Liquids in Secondary Containment or Other Sump Areas, included as Appendix D to this Plan. There are no bulk containers located outside of buildings where precipitation could accumulate in secondary containment.

Spill Response Equipment and Materials

The locations for spill cleanup equipment and materials are situated throughout the Landscape Arboretum in critical locations, such as research areas, garages and other locations where hazardous materials may be present. The typical spill response materials may include the following items:
• Absorbent pads/materials
• Personnel protective equipment
• Poly or steel drums
• Tools for mechanical cleanup (broom, shovel, etc).

Monthly inspections at each location verify that adequate spill response equipment and materials is available at each operational area that has containers or tanks subject to this Plan.

3.3 Procedural Countermeasures (112.7(e), 112.7(h), 112.8(c)(6), 112.8(c)(10), 112.8(d))

Facility operating procedures limit the potential for releases of oil products.

Bulk Transfer Operations

Bulk transfer of oil products is required to meet the minimum requirements and regulations of 39 CFR Parts 172 and 177, established by the US Department of Transportation, Pipeline and Hazardous Materials Safety Administration. These regulations require each person who engages in cargo tank loading or unloading operations to perform a “risk assessment” of the loading and unloading operation and develop and implement safe operating procedures based upon the results of the risk assessment.

Prior to the initiation of transfer operations, the delivery personnel will verify the available capacity of the tank by direct reading of the tank. The bill of lading or other shipping documents will be checked to confirm the correct material and quantity is being delivered.

The delivery and loading of products is monitored by the physical presence of the truck driver. Truck drivers prevent premature departure by setting the parking brake prior to transfer. The brakes are not released until the bulk transfer has been completed, the lines stowed, and all of the valves are checked to ensure they are secured. Prior to transfer and departure of a truck, the bottom drain and all outlets are closely examined for leakage, and, if necessary, tightened to make sure no leak occurs.

Used oil is transferred from the used oil AST using a truck-mounted transfer pump. The used oil is pumped from the AST to a transfer truck that is parked in the vicinity of the AST. A line failure may cause a leak that could flow to the trench floor drains (Service Area Shop) or concrete surface (HRC Farm Shop) located in the transfer area. New oil is transferred into ASTs at the Service Area Shop in a similar manner and spills would flow to the trench floor drain.

Other oils are delivered to the Facility in 55-gallon drums and placed on the spill containment pallets. Oil may be used directly from these drums or pumped to ASTs. A spill which occurs during transfer will flow into the trench floor drains or spill pallet for the Service Area Shop. The HRC Farm Shop uses new oil containers which are not regulated.

Maintenance

Landscape Arboretum staff are responsible for routine and preventive maintenance to prevent spills and releases in their respective operational area. If, based on inspections or periodic testing, it is determined that the integrity of the containers or auxiliary equipment is or may have been compromised or changes need to be made, the system will be taken out of service, the problem evaluated, and appropriate steps taken to correct deficiencies.

The oil/water separator at the Service Area Shop building is serviced on a routine basis to remove sediments and floating liquids. The Service Area staff will inspect the oil/water separator every 6 months. The oil/water separator will be pumped annually. This enables
the oil/water separator to function as a control measure for intercepting and containing oil spills which may occur. Prior to returning the oil/water separator to service after maintenance, it is refilled with water to ensure proper function in the event of an oil spill.

Inspection

Inspection procedures limit the possibility of a spill from equipment malfunction; obvious equipment failures will be repaired promptly. Each functional area is responsible for conducting inspections at the required frequency, and reporting findings to the Maintenance Director. Each functional area is responsible for operating and maintaining equipment to prevent releases. Responsible persons for each functional area, along with specific responsibilities for each role, are identified in Part 1.6 of this Plan.

Combined monthly inspections are conducted by staff knowledgeable of Facility operations in their respective functional areas, characteristics of the liquid stored, the type of container and its associated components to comply with the requirements of Minn. R. 7152 (ASTs), and 40 CFR 112.7(e)(8) (SPCC). The inspection checklists included in Appendix I of this Plan include checklists for each functional area at the Facility to include all regulated tanks and containers.

Walk-through inspections of the Facility are conducted monthly for tanks and containers, and annually for oil-filled equipment, to make sure the essential equipment is working, and to focus specifically on detecting any change in conditions or signs of product leakage from the container, piping system, and appurtenances.

If there are problems identified during the inspection, staff within respective operational areas will take action quickly to resolve these problems and avoid releases.

The Facility is deviating from the integrity testing provision of §112.8(c)(6) based on good engineering practice after considering bulk container installation and alternative measures, the requirements of Steel Tank Institute (STI) Standard SP-001, and alternative measures implemented by the Facility. The “environmental equivalence” for integrity testing is the routine visual inspection and documentation for Facility oil containers.

All containers regulated under SPCC requirements are shop-built, completely above-ground and the surfaces of the containers are visible. The containers are not insulated, and the outside surfaces of the container shell can therefore be observed on an ongoing basis. The containers are located within properly sized containment in accordance with §112.8(c)(2), where required. Under SP-001, Landscape Arboretum ASTs are considered Category 1 tanks (ASTs with spill control and with continuous release detection method) and therefore require periodic inspection of the tank.

3.4 Drainage from Diked Areas (112.8(c)(3))

All oil containers with open secondary containment are located indoors to prevent the accumulation of precipitation within the secondary containment. Provisions for precipitation drainage from diked areas are not needed. Liquids in secondary containment areas are subject to a visual inspection, and contaminant testing, as described by the DEHS Environmental Fact Sheet: Evaluation of Liquids in Secondary Containment or Other Sump Areas, included as Appendix D to this Plan.
3.5 Personnel Training (112.7(f))

The Maintenance Director ensures that employees involved in the handling and use of oil products are trained as described by this section. Specific training materials and elements covered are designed to meet the requirements of 40 CFR 112.7(f).

Training includes the following items:

- The environmental hazards of accidental leaks and oil product spills and the necessity of preventative measures.
- Maintenance and inspection procedures.
- The proper operation of unloading, storage, pumping, piping, and other equipment. This includes proper startup and shutdown sequences; proper control procedures and process adjustments; proper valve arrangements; and proper unloading procedures for oil materials.
- The reporting procedure (Appendices A and B) to follow in case of a spill.
- The containment and cleanup procedures to be followed in case of a spill.

New employees will receive training as part of their initial training program. In addition, employees with specifically identified roles receive additional and/or annual training. Annual training may be incorporated into regularly scheduled safety meetings. Records of training are maintained within electronic records accessible by the Maintenance Director.

Part 4. Contingency Plan for Spills

The UMN Department of Environmental Health and Safety provides guidance to the campus for managing and reporting spills and releases. The DEHS Environmental Fact Sheet: “Responding to Spills and Releases” is included as Appendix A for spill response guidance. The DEHS Spill Reporting Form is included as Appendix B to the Plan.

At the Arboretum, Facilities Management staff provide for guidance and assistance in responding to spills, and are the first call for help during business hours. Facilities Management staff will also manage local responders, and will coordinate reports to the Site Director, any on-site contractor and consult with EHS staff.

4.1 Containment and Cleanup (112.7(a)(4))

The Landscape Arboretum is committed to responding effectively to incidents involving oil products. The locations for spill cleanup equipment and materials are situated throughout the Landscape Arboretum in critical locations, such as research areas, garages and other locations where hazardous materials may be present. Access to cleanup materials will be available at all times during oil deliveries and transfers.

Actions to decrease impact of a spill may include any of the following:

- Adequate communication to prevent injury and reduce environmental impacts.
- Control of the source and spread of the discharge.
- Containment of the spill by means of physical barriers, or other.

In most cases, spilled oil product will be contained at the location of the spill. For outdoor locations, containment can be achieved by blocking surface water drainage pathways.
4.2 Reporting Requirements (112.7(a)(5), 112.7(j))

A spill released to the environment may represent a reportable spill which requires notification to the appropriate regulatory agencies. The Environmental Compliance Specialist determines whether a spill is reportable and to whom the spill must be reported (State Duty Officer, National Response Center, EPA). The Environmental Compliance Specialist will work with the person discovering the spill to make any appropriate reports. Any required written reports are prepared, submitted and maintained by the Environmental Compliance Specialist.

The UMN procedure for reporting and tracking of spill incidents is detailed in the Factsheet included as Appendix A of this Plan. The Spill Reporting Form is included in Appendix B.

4.3 Disposal Requirements

Typical wastes generated from spills can be of the following nature:

- Oil-contaminated water.
- Oil-contaminated soil.
- Oil-contaminated debris.
- Oil-contaminated sorbent material.

Oil wastes at this Facility are managed in accordance with the guidance on the EHS Environmental Fact Sheet: “Management of Tanks and Containers”, found in Appendix C. Specifically, oil wastes are containerized in a closed, labeled container, placed in the designated used oil location at the Facility. It is recommended that the amount of oil waste be kept to a minimum, and shipped off-site every 6 months. Oil wastes are either handled by the used oil vendors at the Facility, or the University Chemical Waste Program. Contact the Chemical Waste Program at (612) 626-1604 or https://dehs.umn.edu/environmental-health-safety-dehs/regulated-waste to make arrangements to ship waste.

Part 5. Documentation and Recordkeeping

5.1 Regulatory Notifications (112.7(j))

Changes to the type, size and location of regulated containers trigger required changes to this Plan, and (depending on the type of container) may require additional notification to the MPCA.

Changes to the size, type, location, use or equipment of an AST may be subject to the notification requirements of Minn. Stat. 116.48, and the revision requirements of this Plan. Tanks that are no longer in service or not actively being used must undergo formal closure and regulatory notification, as appropriate.

Changes to tanks or containers included in this Plan are initiated by the staff in the affected operational area or Project Manager (if included within the context of a Landscape Arboretum project) through the Environmental Compliance Specialist, who is responsible for completing regulatory contacts and notifications. In some cases, advance notification of activity or soil testing is required. Records related to notifications are maintained locally by the Environmental Compliance Specialist, as well as with other compliance records centrally.

5.2 Recordkeeping (112.7(e))

Compliance records pertaining to this Plan are maintained by the specialist for a period of at least three (3) years from the date of the inspection or training, except for records pertaining to USTs, which are maintained for 10 years.
The following specific records are maintained:

- Plan review and amendments
- Training records, including operator certification records for those identified by role, (3 years past termination of employment)
- AST/SPCC record of monthly inspection results (3 years)
- Maintenance records for ASTs (3 years)

Inspections are conducted and documented in accordance with the schedule indicated herein. Completed checklists are completed by campus staff as indicated in Part 1.6 of the Plan, and forwarded to the Environmental Compliance Specialist. Each operational area lead is responsible for taking corrective actions and initiating preventive maintenance within their respective work areas, with overall campus oversight by the EHS specialist.

Documents and records required by this Plan are maintained with the Plan. Electronic records of some Plan components, as determined by the Environmental Compliance Specialist, are also available.

5.3 Plan Revisions

This Plan is reviewed and amended periodically to ensure that it accurately reflects oil handling locations and activities at the Facility, including the following times:

- Within 6 months of a change in Facility design, construction, operation, or maintenance that materially affects the Facility's spill potential.
- Within 5 years of the signature date of this Plan, to ensure that the most effective prevention and control technology is implemented to reduce the likelihood of a spill event.
- Within 6 months of any release more than 42 gallons in size from the Facility.

The following table describes the date and nature of each revision made to this Plan; if major changes to the Plan are made, revisions must be recertified by a Professional Engineer.

<table>
<thead>
<tr>
<th>Date of Revision</th>
<th>Revision Author Name, Extension</th>
<th>Part(s) of Plan Affected</th>
<th>Description of Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURES
Figure 2.
SPCC Facility Map, Assets and Inlet Locations

Above:
University of Minnesota
Horticultural Research Station
600 Arboretum Blvd, Excelsior, MN 55331

Right:
University of Minnesota
Landscape Arboretum
3675 Arboretum Dr, Chaska, MN 55318

- Barrel
- Aboveground Storage Tank
- Reservoir - Elevator
- Reservoir - Transformer
- Septic System
- Storm Water Manhole or Catch Basin
- Sanitary Sewer Manhole
- Stormwater Pipe
- Sanitary Sewer Pipe
- Elevation Contours
- University of Minnesota Buildings
This document provides an overview of the state environmental regulations and EHS guidelines for the report of spills and releases to the environment at the University of Minnesota Landscape Arboretum and Horticultural Research Center (HRC).

Small spills and releases at the Arboretum/HRC are managed by Arboretum Facilities Management staff, and, if needed, the Carver County Sheriff's Department, and/or City of Chanhassen Fire Department. Note that normal work rules apply during shift work and after-hours work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Contain the spill if possible to do safely
 • Stop the release, if possible, by turning off any pump (use the "Emergency Stop" button, valve or by adding a bucket or other container under the drip or leak to contain the release.)
 • Locate spill kit and other necessary materials, including the Safety Data Sheet for the spilled material. See the Arboretum SPCC Plan Figure 2 for location of spill kits.
 • Ensure access to water and sewers is blocked using adsorbent pads or other methods to divert flow. Isolate the area from others by blocking it, roping it off or using cones.</td>
</tr>
<tr>
<td>2</td>
<td>Call for help
 • For all spills, call 612.301.1253 (Maruy Giesen) Facilities Management for guidance and direction as soon as possible.
 • Be prepared to provide the following information:
 o Your name, location and phone number,
 o Location of the incident: building, floor and room number,
 o Time and type of incident,
 o Name and quantity of chemicals involved, to the extent known,
 o The extent of injuries, if any.
 o Type of hazard to health or the environment including (particularly: flammable, oxidizer, highly reactive and air-born toxic or irritant materials), radioactive materials, biohazards).
 o The safest route to approach the spill.
 • Refer to the Arboretum/HRC Emergency Action Plan for additional details and protocols.
 • Contact 9-1-1 if there is an imminent threat to human health or safety.</td>
</tr>
<tr>
<td>3</td>
<td>Clean up the spill
 • Arboretum Facilities Management staff will provide instructions and guidance on cleanup actions, and coordinate communications and spill response activities, including managing local responders.
 • If directed to do so, clean up the spill yourself only if:
 o it does not involve injury,
 o you have the proper training and proper protective equipment to do the cleanup, and
 o the spill is contained.</td>
</tr>
<tr>
<td>4</td>
<td>Report spills to operational managers
 • Arboretum Facilities Management staff will notify the Site Director, and any on-site contractor, vendor or visitor onsite, as appropriate.
 • Contact DEHS compliance staff at 612.626.7957 to determine if a report to the State Duty Officer is required. Reporting will be done in collaboration between Arboretum Facilities Management and DEHS compliance staff.</td>
</tr>
<tr>
<td>5</td>
<td>Additional Reporting for releases to the environment.
 • A release to the environment is any spill to the air, land or to the water – including to the storm sewer, sanitary sewer or to a surface water body such as a drainage ditch.
 • DEHS ensures/verifies that the State Duty Officer (651.649.5451) is contacted soon after the initial on-site evaluation has been completed, but no later than 24-hours after discovery of the release.
 • EHS determines if the release exceeds the Reportable Quantity (RQ) for the chemical released.
 o A convenient online tool to determine RQ is at http://homer.ornl.gov/rq/
 o Report releases above the RQ to the National Response Center at 800.424.8802.</td>
</tr>
</tbody>
</table>
Spill or Incident Reporting Form

Instructions: Complete this form for any spill or other incident involving a petroleum product, hazardous materials/waste or refrigerant. The information provided on this form is used when contacting Emergency Responders and making required regulatory reports. Refer to the Fact Sheet: *Responding to Spills and Releases* for more information.

Part A. Caller Information

<table>
<thead>
<tr>
<th>Name of Reporter:</th>
<th>Name of Receiver:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone Number:</th>
<th>Phone Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- University Employee
- Contractor
- City Employee
- State Duty Officer
- Other:

Part B. Spill Information

Material Spilled:

- Petroleum
- Refrigerant
- Wastewater/Liquid Manure
- SARA Chemical
- Non-SARA Chemical
- Other/Emission

Location Spilled:

- Indoors, fully contained
- Indoors, not fully contained
- Outdoors, fully contained
- Outdoors, not fully contained

Discharge to:

- None
- Air
- Storm Sewer
- Ground
- Sanitary Sewer
- Surface Water

Specific Location of Spill:

GIS Coordinates: X = __________ Y = __________

Duration of Spill:

Start Date/Time: __________
End Date/Time: __________
Volume of Spill (est): __________

- Gallons
- Pounds

Cause of Spill:

Corrective Actions Plan:

Part C. Notifications

State Duty Officer:

Name and Badge No/Ext No: __________
Ticket No: __________
Date/Time: __________

National Response Center:

Name and Badge No/Ext No: __________
Ticket No: __________
Date/Time: __________

Env Compliance Staff:

Name and Badge No/Ext No: __________
Ticket No: __________
Date/Time: __________

Campus EH&S:

Name and Badge No/Ext No: __________
Ticket No: __________
Date/Time: __________

Other:

1. See http://homer.ornl.gov/rq/ for a convenient online tool to determine SARA chemicals and RQs.
2. Indicate the Campus Number, Building Number and Room Number or closest University asset (such as an electrical, sanitary, communications manhole), street intersections and directional.
3. Indicate date and time of when spill began and ended. If exact start/stop date is not known, use the date University staff became aware of the spill start/stop.
4. Describe the situation, equipment involved, and other information/causeful factors about how the spill occurred.
5. Describe corrective actions taken at the time of spill. DEHS staff to additionally describe any additional corrective actions needed, including time schedule for implementation, and additional reporting.
6. Immediate notification to the State Duty Officer is required for releases to the environment of more than 5 gallons of petroleum product, or any volume of other regulated substances. Immediate notification to the National Response Center is additionally required for releases exceeded the Reportable Quantity (RQ) for identified substances. Consult with UHS Environmental Compliance staff for a determination on when regulatory notifications are required.
7. Notify Campus DEHS and central DEHS staff. Notify CMR or Prime Contractor management if spill is at a construction site. Notify operational unit manager, lead principal investigator (PI) or Project Manager.
This document provides an overview of environmental regulations and EHS guidelines for the selection of appropriate storage areas, and for the proper storage of materials and wastes in tanks and containers at University projects, sites and buildings. Additional site specific provisions may apply in some cases, including additional requirements for hazardous wastes, and tanks/tank systems.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Choose proper container storage location</td>
</tr>
<tr>
<td></td>
<td>- Indoors or under cover from elements, away from and down-gradient of floor drains, storm sewer drains and exterior building doors.</td>
</tr>
<tr>
<td></td>
<td>- Protected from vehicle traffic, theft and vandalism.</td>
</tr>
<tr>
<td></td>
<td>- Aisles maintained to visually see and allow spill and emergency response.</td>
</tr>
<tr>
<td></td>
<td>- Surface that is compatible and impervious to the material being stored.</td>
</tr>
<tr>
<td></td>
<td>- On pallets or in rack systems to prevent contact with condensation and other moisture.</td>
</tr>
<tr>
<td></td>
<td>- Area should be clean and dry with a moderate temperature to provide the most stable environment</td>
</tr>
<tr>
<td></td>
<td>- Provide secondary containment for all waste, oil products and flammables containers if ≥ 55 gallons in size</td>
</tr>
<tr>
<td>2</td>
<td>Choose proper container</td>
</tr>
<tr>
<td></td>
<td>- Leak-proof and in good condition.</td>
</tr>
<tr>
<td></td>
<td>- Correct size for safe and efficient inventory management.</td>
</tr>
<tr>
<td></td>
<td>- Compatible with material being stored.</td>
</tr>
<tr>
<td>3</td>
<td>Label container</td>
</tr>
<tr>
<td></td>
<td>- Label container as soon as anything is placed in it.</td>
</tr>
<tr>
<td></td>
<td>- Place label on the body of any container – not on the cover.</td>
</tr>
<tr>
<td></td>
<td>- All containers – regardless of the waste/product -- with AT LEAST the following information:</td>
</tr>
<tr>
<td></td>
<td>o Description of the contents (all containers)</td>
</tr>
<tr>
<td></td>
<td>o NFPA diamond (all containers)</td>
</tr>
<tr>
<td></td>
<td>o Capacity of the container (if container is >55 gallons)</td>
</tr>
<tr>
<td></td>
<td>o Tank registration ID from MPCA (if container is ≥ 500 gallons)</td>
</tr>
<tr>
<td></td>
<td>- Oily Wastes (used oil, used oil filters, used oil sorbents and oily rags):</td>
</tr>
<tr>
<td></td>
<td>o Use the words “Used Oil” with the descriptive name, eg. Used Oil Filters, Used Oil Sorbents. (Do not use “Waste Oil”.)</td>
</tr>
<tr>
<td></td>
<td>- Hazardous Wastes (most chemicals not including petroleum or agricultural chemicals):</td>
</tr>
<tr>
<td></td>
<td>o USE a “Hazardous Waste” label with the descriptive name.</td>
</tr>
<tr>
<td></td>
<td>o Accumulation Start Date – indicate the date when you start adding waste to the container</td>
</tr>
<tr>
<td></td>
<td>o Fill Date – indicate the date when container is filled</td>
</tr>
<tr>
<td></td>
<td>- Special/Universal Wastes (batteries, lamps, mercury containing equipment, pesticides) require special markings:</td>
</tr>
<tr>
<td></td>
<td>o Use the words “Used” or “Waste” with the description name, eg. “Used Lamps”, “Waste Batteries”.</td>
</tr>
<tr>
<td>4</td>
<td>Close containers.</td>
</tr>
<tr>
<td></td>
<td>- Containers must remain closed and sealed, except when adding or removing materials/wastes.</td>
</tr>
<tr>
<td></td>
<td>o Closed means bungs and caps are fully screwed in or on.</td>
</tr>
<tr>
<td>5</td>
<td>Store containers properly.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>- Do not mix wastes together or keep incompatible materials in the same storage area.</td>
</tr>
<tr>
<td></td>
<td>- Keep all material and waste containers in storage area unless in use.</td>
</tr>
<tr>
<td></td>
<td>- Maintain spill response materials near storage areas, marking the container “Spill Kit” or similar wording.</td>
</tr>
<tr>
<td></td>
<td>- Use dry cleanup methods whenever possible to cleanup spills; contain and label waste from cleanup.</td>
</tr>
<tr>
<td></td>
<td>- Inspect container storage areas weekly for spills, container condition, label performance, storage time limits, container protection and aisle space.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Respond to container problems and spills immediately:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Implement Spill Response Procedure immediately if there is a spill (contact EHS staff for specifics). See EHS Spill Response Factsheet for more information.</td>
</tr>
<tr>
<td></td>
<td>- Overpack or repackage any containers that have failed or are in poor condition if it is safe to do so.</td>
</tr>
<tr>
<td></td>
<td>- Add/secure labels as indicated above.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Manage empty containers properly:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Empty aerosol cans should be collected, labeled and managed as a hazardous waste.</td>
</tr>
<tr>
<td></td>
<td>- Empty drums and other containers may be retained on-site for reuse or recycle:</td>
</tr>
<tr>
<td></td>
<td>- Remove/blackout previous labels/markings</td>
</tr>
<tr>
<td></td>
<td>- Mark “Empty”</td>
</tr>
<tr>
<td></td>
<td>- Store in a manner to prevent safety and nuisance conditions, and to prevent accumulation of precipitation</td>
</tr>
<tr>
<td></td>
<td>- Indoors or under cover is preferable</td>
</tr>
<tr>
<td></td>
<td>- If outdoors, stored covered, stacked on their side or upright no more than 2 drums high.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Ship containers of waste on a timely basis:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Special/Universal wastes: off-site within 1 year of fill date.</td>
</tr>
<tr>
<td></td>
<td>- Oily wastes: minimize amount stored onsite; recommend shipment off-site every 6 months.</td>
</tr>
<tr>
<td></td>
<td>- Hazardous wastes: move within 30 days of fill date to central accumulation area; check with Chemical Waste Program for time allowed in central accumulation area (time varies).</td>
</tr>
<tr>
<td></td>
<td>- Contact the Chemical Waste Program at (612) 626-1604 or hazwaste@tc.umn.edu to make arrangements to ship waste.</td>
</tr>
</tbody>
</table>
This document provides an overview of the state environmental regulations and EHS guidelines for evaluating liquids discovered in a secondary containment and other sump areas at University projects, sites, and buildings.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action required</th>
</tr>
</thead>
</table>
| 1 | Visually determine if the liquid has any floating layers or portions.
 - If yes, determine whether there is free petroleum or other stored product present. If yes, estimate volume of free product and report to EHS staff as a spill.
 - If safe to do so, recover free product using absorbent products (pads, booms, socks), storing spent absorbent in a closed, labeled container for Chemical Waste Program disposal (see Step 6, below).
 - Collect a sample on the remaining liquid, and analyze as described by the flow chart below. **Do not discharge liquid.**
 - If no, continue to Step 2. |
| 2 | Visually determine if the liquid has a sheen, odor or color.
 - If yes, collect a sample on the liquid, and analyze as described by the flow chart below. **Do not discharge liquid.**
 - If no, continue to Step 3. |
| 3 | Visually determine if there are any floating or settled solids in the liquid.
 - If there are any floating solids, remove solids and dispose in solid waste.
 - If there are any settled solids, avoid disruption of solids when removing liquid portion by keeping suction inlet above the bottom of the basin and/or using a suction sock over the inlet. **Do not discharge solids with the liquid portion.**
 - Continue to Step 4 after accounting for solids. |
| 4 | Discharge “clean” liquids to vegetated area or to a storm sewer drainage area, if vegetation is not available.
 - If “no” to steps 1 and 2, and solids are managed as described in step 3, the liquid is considered “clean”.
 - When pumping liquids, ensure that the pump inlet remains at the top of the liquid or that the inlet is covered with mesh or filter sock to avoid discharge of solids.
 - Outlet should be to a vegetated area, if possible, with energy dissipation. If vegetation is unavailable, discharge only with erosion prevention and energy dissipation measures in place. Consult with EHS staff for site specific ideas for erosion prevention and/or energy dissipation measures.
 - If draining from a containment plug hole, be sure that solids do not leave containment, and that the drain is closed after use. |
| 5 | Analyze liquids that are not “clean” to determine proper management.
 - If the containment area has limited freeboard available and/or is in danger of overtopping, move liquid to a covered, closed and labeled container until analysis is completed and evaluated.
 - The following parameters should be analyzed using 40 CFR 136 methods, unless otherwise excepted as shown below, where there is reasonable potential for the pollutant to be present:
 - VOCs
 - Alt method for benzene, toluene, ethylbenzene: Method 602, 624 or 1624, or EPA... |
6 Evaluate sample results.
- Samples representing liquids where all analytes are non-detectable (ND) are considered to be “clean”. These liquids can be managed as described in step 4, above.
 - Maintain test results, discharge date, location and duration with other EHS records.
- Samples representing liquids where any analyte value is above the detection level is not considered “clean”. **Do not discharge this liquid to vegetation or to storm sewer.**
 - Provide sample results and a volume estimate to EHS staff, and consult about disposal requirements.
 - In cases with limited pollutant level and/or volume, liquids may be able to be discharged to the sanitary sewer. A letter of no action, or a single-use discharge permit from MCES may be required.
 - In cases with elevated pollutant levels, the liquid may be required to be managed by the Chemical Waste Program (see Step 7, below).
 - Maintain test results and other relevant disposal information with other EHS records.

7 Managed collected wastes timely.
- For collected wastes that cannot be discharged: move within 30 days of fill date to central accumulation area; check with Chemical Waste Program for time allowed in central accumulation area (time varies).
 - Contact Chemical Waste Program at (612) 626-1604 or hazwaste@tc.umn.edu to make arrangements to ship waste.
APPENDIX E

SPCC Site Details: Bulk Container
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: AST001 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>22-033 Vehicle Maintenance Shop</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Northeast Side</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.855382, -93.620552</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>Height is 70, diameter is 40.</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Diesel Fuel_Fuel Oil No 2</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Double Walled</td>
<td>Shop Built</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Inventory Control/Reconciliation</td>
<td>Elevated</td>
</tr>
</tbody>
</table>

Part B. Piping Details

<table>
<thead>
<tr>
<th>Piping Material</th>
<th>Flexible Nonmetallic, Single Walled</th>
<th>X All Aboveground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping Leak Detection Type</td>
<td>Visual Monitoring</td>
<td>X Testing Required</td>
</tr>
</tbody>
</table>

Part C. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Double-Walled Tank</th>
<th>X Containment or Interstitial Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Containment Valve Type</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Substance Transfer Safeguards/Overfill Protection Type:</td>
<td>Spill Box/Bucket; Overfill Protection Type: Tank Level Gauge</td>
<td>X Fill port adjacent to/on container</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-impermeable surface</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>No storm sewers in immediate area. Flow would be onto concrete and then easterly 50 feet to drainage ditch.</td>
<td></td>
</tr>
</tbody>
</table>

Part D. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Fill pipe is maintained locked; lighting provided by adjacent buildings. Bollards are in place near tanks to prevent accidental damage. | |

see next page for Parts E (Images) and F (Site Facility Map)
Part E. Images

Part F. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.

Data Sources: University of Minnesota University Services, Minnesota DNR, Esri.

Date: 4/23/2019
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: AST002 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>22-033 Vehicle Maintenance Shop</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Northeast Side</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.855402, -93.620586</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>Height is 80, diameter is 48.</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Gasoline, Unleaded</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Double Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Automatic Tank Gauging</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Piping Details

<table>
<thead>
<tr>
<th>Piping Material</th>
<th>Flexible Nonmetallic, Single Walled</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part C. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Double-Walled Tank</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containment Valve Type</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Substance Transfer Safeguards/Overfill Protection Type:</td>
<td>Spill Box/Bucket; Overfill Protection Type: Tank Level Gauge</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-impermeable surface</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>No storm sewers in immediate area. Flow would be onto concrete and then easterly 50 feet to drainage ditch.</td>
<td></td>
</tr>
</tbody>
</table>

Part D. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Fill pipe is maintained locked; lighting provided by adjacent buildings. Bollards are in place near tanks to prevent accidental damage. |

see next page for Parts E (Images) and F (Site Facility Map)
Part E. Images

Part F. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: AST003 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
</tbody>
</table>
| **Location** | 22-033 Vehicle Maintenance Shop | ×Indoors
| | | ×All Aboveground
| | | Mobile |
| **Location Details** | Floor 1, Main Shop |
| **Coordinates (lat, long)** | 44.855213, -93.621145 |
| **Shell Capacity (gallons)** | 65 |
| **Dimensions (inches)** | 18 x 24 x 18 |
| **Contents** | Oils and Lubricants, Unused |
| **Tank Construction** | Carbon Steel, Single Walled |
| **Tank Base Type** | Concrete Pad |
| **Leak Detection Type** | Visual Monitoring |

Part B. Piping Details

Piping Material	Carbon Steel, Single Walled
Piping Leak Detection Type	Visual Monitoring
Containment Type	Spill Pallet
Containment Capacity (gallons)	132
Containment Valve Type	None
Substance Transfer Safeguards/Overfill Protection Type:	Tank Level Gauge
Drainage Flow/Inlet Nearby	Sanitary Inlet-impermeable surface
Drainage Flow, comments, and other considerations	Flow would be southerly 20 feet to trench drain, then to oil/water separator and septic system.

Part C. Containment Area/Provisions

Containment Type	Spill Pallet
Containment Capacity (gallons)	132
Containment Valve Type	None
Substance Transfer Safeguards/Overfill Protection Type:	Tank Level Gauge
Drainage Flow/Inlet Nearby	Sanitary Inlet-impermeable surface
Drainage Flow, comments, and other considerations	Flow would be southerly 20 feet to trench drain, then to oil/water separator and septic system.

Part D. Security Provisions/Adequacy

| **Damage Prevention and Security Provisions** | Containers are elevated on shelving for use by maintenance staff. Adequate lighting and damage prevention is in place to prevent accidental release. |

See next page for Parts E (Images) and F (Site Facility Map)
see previous page for Parts A-D

Part E. Images

Part F. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: AST004 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
</tbody>
</table>
| Location | 22-033 Vehicle Maintenance Shop | ✓Indoors
| | | ×All Aboveground |
| Location Details | Floor 1, Main Shop | |
| Coordinates (lat, long) | 44.855213 , -93.621145 | |
| Shell Capacity (gallons) | 65 | |
| Dimensions (inches) | 18 x 24 x 18 | |
| Contents | Oils and Lubricants, Unused | |
| Tank Construction | Carbon Steel, Single Walled | ×Shop Built
| | | ✓Field Erected |
| | | ✓Heated Internally |
| Tank Base Type | Concrete Pad | |
| Leak Detection Type | Visual Monitoring | |
| | | ✓Elevated
| | | ✓Integrity Testing |

Part B. Piping Details

| Piping Material | Carbon Steel, Single Walled | ✓All Aboveground
| | | ×Testing Required |
| Piping Leak Detection Type | Visual Monitoring | |

Part C. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Spill Pallet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>132</td>
</tr>
<tr>
<td>Containment Valve Type</td>
<td>None</td>
</tr>
<tr>
<td>Substance Transfer Safeguards/Overfill Protection Type:</td>
<td>Tank Level Gauge</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>Sanitary Inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Flow would be southerly 20 feet to trench drain, then to oil/water separator and septic system.</td>
</tr>
</tbody>
</table>

Part D. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Containers are elevated on shelving for use by maintenance staff. Adequate lighting and damage prevention is in place to prevent accidental release. |

see next page for Parts E (Images) and F (Site Facility Map)
Part F. Site Facility Map

- Sanitary Sewer Pipe
- Buildings
- Elevation (approx.)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: AST005 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>22-033 Vehicle Maintenance Shop</td>
<td>XIndoors XAll Aboveground</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, Main Shop</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.855213 , -93.621145</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>18 x 24 x 18</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Oils and Lubricants, Unused</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td>XShop Built</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td>■Elevated</td>
</tr>
</tbody>
</table>

Part B. Piping Details

| Piping Material | Carbon Steel, Single Walled | XAll Aboveground |
| Piping Leak Detection Type | Visual Monitoring | XTesting Required |

Part C. Containment Area/Provisions

Containment Type	Spill Pallet	
Containment Capacity (gallons)	132	
Containment Valve Type	None	
Substance Transfer Safeguards/Overfill Protection Type: Tank Level Gauge	XFill port adjacent to/on container	
Drainage Flow/Inlet Nearby	Sanitary Inlet-impermeable surface	
Drainage Flow, comments, and other considerations	Flow would be southerly 20 feet to trench drain, then to oil/water separator and septic system.	

Part D. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Containers are elevated on shelving for use by maintenance staff. Adequate lighting and damage prevention is in place to prevent accidental release. | |

see next page for Parts E (Images) and F (Site Facility Map)
Part E. Images

Part F. Site Facility Map
SPCC Detail Sheet: Bulk Container (AST)

Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: AST006 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>22-033 Vehicle Maintenance Shop</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, Main Shop</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.855255, -93.621132</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>68 x 50 x 50</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Oils and Lubricants, Used</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Double Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Interstitial Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Piping Details

<table>
<thead>
<tr>
<th>Piping Material</th>
<th>None</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping Leak Detection Type</td>
<td>All Aboveground</td>
<td>Testing Required</td>
</tr>
</tbody>
</table>

Part C. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Double-Walled Tank</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Containment Valve Type</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Substance Transfer Safeguards/Overfill Protection Type:</td>
<td>Tank Level Gauge</td>
<td>Fill port adjacent to/on container</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>Sanitary Inlet-impermeable surface</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Flow would be southerly 20 feet to trench drain, then to oil/water separator and septic system.</td>
<td></td>
</tr>
</tbody>
</table>

Part D. Security Provisions/Adequacy

| **Damage Prevention and Security Provisions** | Container is in shop area under direct control of maintenance staff. Adequate lighting and damage prevention is in place to prevent accidental release. | |

see next page for Parts E (Images) and F (Site Facility Map)
see previous page for Parts A-D

Part E. Images

Part F. Site Facility Map

- Sanitary Sewer Pipe
- Buildings
- Elevation (approx.)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: AST008 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>21-029 Farm Shop</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>North Side</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.868247 , -93.635734</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>Height is 70, diameter is 40.</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Diesel Fuel_Fuel Oil No 2</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Double Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Inventory Control/Reconciliation</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Piping Details

| Piping Material | Flexible Nonmetallic, Single Walled | |
| Piping Leak Detection Type | Visual Monitoring | |

Part C. Containment Area/Provisions

Containment Type	Double-Walled Tank	
Containment Capacity (gallons)	500	
Containment Valve Type	None	
Substance Transfer Safeguards/Overfill Protection Type:	Spill Box/Bucket; Overfill Protection Type: Tank Level Gauge	
Drainage Flow/Inlet Nearby	No inlet-impermeable surface	
Drainage Flow, comments, and other considerations	Flow would be to concrete and then sheet flow to north into grassy area.	

Part D. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Fill pipe is maintained locked; lighting provided by adjacent buildings. Bollards are in place near tanks to prevent accidental damage. |

See next page for Parts E (Images) and F (Site Facility Map)
Please take a picture of the containment area.
Please take a picture of the tank/container.

Part F. Site Facility Map

- Sanitary Sewer Manhole
- Sanitary Sewer Pipe
- Buildings
- Elevation (approx.)

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota, University Services, Minnesota DNR, Esri.

Date: 4/23/2019
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: AST009 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>21-029 Farm Shop</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>North Side</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.868245, -93.635764</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>Height is 80, diameter is 48.</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Gasoline, Unleaded</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Double Walled</td>
<td>X Shop Built</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Inventory Control/Reconciliation</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Piping Details

<table>
<thead>
<tr>
<th>Piping Material</th>
<th>Flexible Nonmetallic, Single Walled</th>
<th>X All Aboveground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping Leak Detection Type</td>
<td>Visual Monitoring</td>
<td>Exposed Piping</td>
</tr>
</tbody>
</table>

Part C. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Double-Walled Tank</th>
<th>X Containment or Interstitial Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containment Valve Type</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Substance Transfer Safeguards/Overfill Protection Type:</td>
<td>Spill Box/Bucket; Overfill Protection Type: Tank Level Gauge</td>
<td>X Fill port adjacent to/on container</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-impermeable surface</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Flow would be to concrete and then sheet flow to north into grassy area.</td>
<td></td>
</tr>
</tbody>
</table>

Part D. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Fill pipe is maintained locked; lighting provided by adjacent buildings. Bollards are in place near tanks to prevent accidental damage. |

see next page for Parts E (Images) and F (Site Facility Map)
see previous page for Parts A-D

Part E. Images

Part F. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: AST010 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>21-029 Farm Shop</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Main Shop</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.868508, -93.635739</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>Height is 42, diameter is 20.</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Oils and Lubricants, Used</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Plastic</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Oils and Lubricants, Used</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Plastic</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Piping Details

<table>
<thead>
<tr>
<th>Piping Material</th>
<th>All Aboveground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping Leak Detection Type</td>
<td>Testing Required</td>
</tr>
</tbody>
</table>

Part C. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Double-Walled Tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td></td>
</tr>
<tr>
<td>Containment Valve Type</td>
<td>None</td>
</tr>
<tr>
<td>Substance Transfer Safeguards/Overfill Protection Type:</td>
<td>Tank Level Gauge</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Flow would be onto concrete floor, and then south out the garage door.</td>
</tr>
</tbody>
</table>

Part D. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Container is in shop area not accessible to the general public. Adequate lighting and damage prevention is in place to prevent accidental release. |

see next page for Parts E (Images) and F (Site Facility Map)
Please take a picture of the containment area.

Part F. Site Facility Map

Please take a picture of the tank/container.
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: DS001 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>21-029 Farm Shop</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, None</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.855214, -93.621102</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>Height is 24, diameter is 34.</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Oils and Lubricants, Unused</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part C. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Spill Pallet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>66</td>
</tr>
<tr>
<td>Containment Valve Type</td>
<td>None</td>
</tr>
<tr>
<td>Substance Transfer Safeguards/Overfill Protection Type:</td>
<td>None</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>Sanitary Inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Flow would be southerly 30 feet to trench drain, then to oil/water separator and septic system.</td>
</tr>
</tbody>
</table>

Part D. Security Provisions/Adequacy

| **Damage Prevention and Security Provisions** | Container is in shop area under direct control of maintenance staff. Adequate lighting and damage prevention is in place to prevent accidental release. |

see next page for Parts E (Images) and F (Site Facility Map)
Please take a picture of the containment area.

Part E. Images

Part F. Site Facility Map

Sanitary Sewer Pipe
Buildings
Elevation (approx.)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: DS002 (A)</th>
<th>Owner</th>
<th>ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>21-029 Farm Shop</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, None</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.855226, -93.621091</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>Height is 24, diameter is 34.</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Oils and Lubricants, Used</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Piping Details

<table>
<thead>
<tr>
<th>Piping Material</th>
<th>All Aboveground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping Leak Detection Type</td>
<td>All Testing Required</td>
</tr>
</tbody>
</table>

Part C. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Spill Pallet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>66</td>
</tr>
<tr>
<td>Containment Valve Type</td>
<td>None</td>
</tr>
<tr>
<td>Substance Transfer Safeguards/Overfill Protection Type</td>
<td>None</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>Sanitary Inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Flow would be southerly 30 feet to trench drain, then to oil/water separator and septic system.</td>
</tr>
</tbody>
</table>

Part D. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Container is in shop area under direct control of maintenance staff. Adequate lighting and damage prevention is in place to prevent accidental release. |

See next page for Parts E (Images) and F (Site Facility Map)
Part E. Images

Part F. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: GEN001 (A)</th>
<th>Location</th>
<th>22-005 Froghollow Classroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>Location Details</td>
<td>East Side</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.862927, -93.616861</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>2400</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>12 x 144 x 264</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Diesel Fuel_Fuel Oil No 2</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Double Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Steel Plate</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Automatic Tank Gauging</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Piping Details

| Piping Material | Carbon Steel, Single Walled |
| Piping Leak Detection Type | Visual Monitoring |

Part C. Containment Area/Provisions

Containment Type	Double-Walled Tank
Containment Capacity (gallons)	All Aboveground
Containment Valve Type	None
Substance Transfer Safeguards/Overfill Protection Type	Spill Box/Bucket; Overfill Protection Type: Automatic Shut-off, Level Gauge/Sensor
Drainage Flow/Inlet Nearby	No inlet-impermeable surface
Drainage Flow, comments, and other considerations	No storm sewers in immediate area. Flow would be onto concrete, and then west to parking lot and grassy area.

Part D. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Generator set is in locked enclosure. Lighting on adjacent buildings; not immediately accessible to the public. |

Note:

See next page for Parts E (Images) and F (Site Facility Map)
Part E. Images

Part F. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: GD001 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>22-054 The Oswald Visitor Center</td>
<td>□ Indoors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□ All Aboveground</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□ Mobile</td>
</tr>
<tr>
<td>Location Details</td>
<td>Loading Dock</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.862523, -93.616535</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>32 x 56 x 40</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Cooking Oil, Used</td>
<td>□ Special Use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□ Dispenser</td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td>□ Shop Built</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□ Field Erected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□ Heated Internally</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Asphalt</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td>□ Elevated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□ Integrity Testing</td>
</tr>
</tbody>
</table>

Part B. Piping Details

<table>
<thead>
<tr>
<th>Piping Material</th>
<th>□ All Aboveground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping Leak Detection Type</td>
<td>□ Exposed Piping</td>
</tr>
</tbody>
</table>

Part C. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>□ Containment or Interstitial Sensor</td>
</tr>
<tr>
<td>Containment Valve Type</td>
<td>None</td>
</tr>
<tr>
<td>Substance Transfer Safeguards/Overfill Protection Type:</td>
<td>None</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>Storm inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Drainage from loading dock area easterly to storm drain approximately 40’ away; two additional inlets near grease dumpster.</td>
</tr>
</tbody>
</table>

Part D. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Container is located in an enclosed, gated waste collection pen. This area has lighting from the building and is an area generally not accessible to the public. |

See next page for Parts E (Images) and F (Site Facility Map)
see previous page for Parts A-D

Part E. Images

Part F. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HE001 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>22-054 The Oswald Visitor Center</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 112</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.862109 , -93.616365</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>30 x 23 x 36</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Flow would be to concrete floor of mechanical room.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Container is indoors in an access controlled room with adequate lighting and protection from inadvertent damage. |

Part D. Site Facility Map

[Map showing the location and details of the container, including the Oswald Visitor Center, SPCC ID HE001 (A), Froghollow Classroom, Snyder Education and Conservatory, and other relevant landmarks.]

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.

Data Sources: University of Minnesota University Services, Minnesota DNR, Esri.

Date: 4/23/2019

SPCC ID: HE001 (A)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HE002 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>22-054 The Oswald Visitor Center</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 112</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.862109, -93.616365</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>30 x 23 x 44</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>Flow would be to concrete floor of mechanical room.</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td></td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Container is indoors in an access controlled room with adequate lighting and protection from inadvertent damage. |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.

Data Sources: University of Minnesota University Services, Minnesota DNR, Esri.
Date: 4/23/2019

1/2,000

100 Feet

0 70 140 N

Storm Water Manhole or Catch Basin
Stormwater Pipe
Sanitary Sewer Manhole
Sanitary Sewer Pipe
Buildings
Elevation (approx.)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HE003 (A)</th>
<th>Owner</th>
<th>ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location Details</td>
<td>Floor 1, 10</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.861526 , -93.615075</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>30 x 23 x 36</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

Containment Type	None
Containment Capacity (gallons)	No inlet-impermeable surface
Drainage Flow/Inlet Nearby	Flow would be to concrete floor of mechanical room.

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Container is indoors in an access controlled room with adequate lighting and protection from inadvertent damage. |

Part D. Site Facility Map

![Site Facility Map](image)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR001 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>22-054 The Oswald Visitor Center</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Loading Dock</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.862396 , -93.61652</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>26 x 56 x 44</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No drains in area; flow would be west to landscaped area.</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>No drains in area; flow would be west to landscaped area.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Container is outdoors and utilizes building lighting and general safety/security provisions. |

Part D. Site Facility Map

- Storm Water Manhole or Catch Basin
- Stormwater Pipe
- Sanitary Sewer Manhole
- Sanitary Sewer Pipe
- Buildings
- Elevation (approx.)

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota, University Services, Minnesota DNR. Est. Date: 4/23/2019.
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR002 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>22-054 The Oswald Visitor Center</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>South Side</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.862523 , -93.616535</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>37 x 15 x 45</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

Containment Type	None
Containment Capacity (gallons)	No inlet-impermeable surface
Drainage Flow/Inlet Nearby	No drains in area; flow would be south to landscaped area.

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Container is outdoors and utilizes building lighting and general safety/security provisions. |

Part D. Site Facility Map

![Site Facility Map](https://via.placeholder.com/150)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR003 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>22-031 Learning Center</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Northeast Side</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.864799, -93.618974</td>
<td></td>
</tr>
<tr>
<td>Indoors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>50 x 45 x 24</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

| Containment Type | None |
| Containment Capacity (gallons) |
| Drainage Flow/Inlet Nearby | Storm inlet-permeable surface |
| Drainage Flow, comments, and other considerations | No drains in area; flow would be to south landscaped areas and then south over parking lot. |

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Container is outdoors and utilizes building lighting and general safety/security provisions. |

Part D. Site Facility Map

- **Storm Water Manhole or Catch Basin**
- **Stormwater Pipe**
- **Sanitary Sewer Manhole**
- **Sanitary Sewer Pipe**
- **Buildings**
- **Elevation (approx.)**

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota, University Services, Minnesota DNR, Esri. Date: 4/23/2019
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR004 (A)</th>
<th>Owner</th>
<th>Location</th>
<th>Location Details</th>
<th>Coordinates (lat, long)</th>
<th>Shell Capacity (gallons)</th>
<th>Dimensions (inches)</th>
<th>Contents</th>
<th>Tank Construction</th>
<th>Tank Base Type</th>
<th>Leak Detection Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROC</td>
<td>22-004 Ordway Picnic Shelter</td>
<td>Near irrigation pump for Green Heron Pond</td>
<td>44.85873, -93.615816</td>
<td>36 x 17 x 46</td>
<td>122</td>
<td>Dielectric Fluid</td>
<td>Carbon Steel, Single Walled</td>
<td>Concrete Pad</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Containment Capacity (gallons)</th>
<th>Drainage Flow/Inlet Nearby</th>
<th>Drainage Flow, comments, and other considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>No drains in area, but would flow east overland 50 feet to Green Heron Pond.</td>
<td></td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Container is outdoors and utilizes building lighting and general safety/security provisions.</td>
</tr>
</tbody>
</table>

Part D. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR005 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>22-062 Bee Discovery</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Southwest Side</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.855638, -93.605486</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>41 x 18 x 42</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

- **Containment Type**: None
- **Containment Capacity (gallons)**: No inlet-impermeable surface
- **Drainage Flow/Inlet Nearby**: No drains in area; flow would be north to grassed area.
- **Drainage Flow, comments, and other considerations**: Container is outdoors and utilizes building lighting and general safety/security provisions.

Part C. Security Provisions/Adequacy

- **Damage Prevention and Security Provisions**: Container is outdoors and utilizes building lighting and general safety/security provisions.

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota University Services, Minnesota DNR, Esri. Date: 4/23/2019
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR006 (A)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>21-011 Old Garage</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>South Side</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>44.867895, -93.635775</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>57 x 23 x 60</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No drains in area; flow would be west 20 feet to grassed area and then to driveway.</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td></td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Container is outdoors and utilizes building lighting and general safety/security provisions. |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota University Services, Minnesota DNR, Esri. Date: 4/23/2019
APPENDIX H

Certification of Substantial Harm Determination Form

Facility Name: University of Minnesota Landscape Arboretum
Facility Address: 3675 Arboretum Drive, Chaska, MN 55318

1. Does the facility transfer oil over water to or from vessels and does the facility have total oil storage capacity greater than or equal to 42,000 gallons?
 □ Yes ☒ No

2. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and does the facility lack secondary containment that is sufficiently large to contain the capacity of the largest above-ground oil storage tank plus sufficient freeboard to allow for precipitation within any above-ground storage tank area?
 □ Yes ☒ No

3. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance such that a discharge from the facility could cause injury to fish and wildlife and sensitive environments?
 □ Yes ☒ No

4. Does the facility have a total oil storage capacity greater than or equal or 1 million gallons and is the facility located at a distance such that a discharge from the facility would shut down a public drinking water intake?
 □ Yes ☒ No

5. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and has the facility experienced a reportable oil spill in an amount greater than or equal to 10,000 gallons within the last 5 years?
 □ Yes ☒ No

Katharine Bonneson, Assistant Vice President
University Health and Safety

Date: 5-3-19

For the purposes of 40 CFR Part 112, public drinking water intakes are analogous to public water systems as described at 40 CFR 143.2(c).
APPENDIX I

Plan Inspection Checklists
Part A. Tank /Container Visual Check

<table>
<thead>
<tr>
<th>Review all containers and tanks, piping and associated equipment and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as “No”, indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Labels and signage for tank/container area in place, legible and accurate (USTs must be color-coded).</td>
</tr>
<tr>
<td>2. Exterior of tank or container/s, including paint and coatings, is in good condition, with no evidence of leaking around the tank/container, concrete pad, or ground.</td>
</tr>
<tr>
<td>3. Tank openings are properly sealed and vents are clear of obstructions.</td>
</tr>
<tr>
<td>4. Above-ground piping, valves, pumps, tank sensors and associated equipment are in good condition with no evidence of leaking.</td>
</tr>
<tr>
<td>5. Below-ground piping, valves, pumps, tank sensors and associated equipment are in good condition with no evidence of leaking.</td>
</tr>
<tr>
<td>6. Dispenser and pump area, including hose, swivels, nozzle & breakaway (if present) are in good condition and with no evidence of leaking.</td>
</tr>
<tr>
<td>7. Level gauge/sight glass (if present) is readable and in good condition.</td>
</tr>
<tr>
<td>8. Foundations and supports are structurally sound, free from corrosion and other damage, and in good condition.</td>
</tr>
<tr>
<td>9. Grounding straps, wires and sensors are secure, free from corrosion and other damage and in good condition.</td>
</tr>
<tr>
<td>10. Individual containers are closed, labeled and completely in containment area.</td>
</tr>
<tr>
<td>11. Individual containers do not have any noticeable container distortions, buckling, denting or bulging evident.</td>
</tr>
</tbody>
</table>
Part B. Containment Areas and Release Detection Equipment

Review containment areas associated with containers and tanks and indicate whether the following criteria are met. Indicate "Yes", "No" or "N/A" for each item. For any answer indicated as "No", indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

<table>
<thead>
<tr>
<th>Container ID</th>
<th>Location</th>
<th>Substance</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST001 (A) 22-033</td>
<td>Vehicle Maintenance Shop, Northeast Side</td>
<td>Diesel Fuel, Fuel Oil</td>
<td>No 2 (280)</td>
</tr>
<tr>
<td>AST002 (A) 22-033</td>
<td>Vehicle Maintenance Shop, Northeast Side</td>
<td>Gasoline, Unleaded</td>
<td>(525)</td>
</tr>
<tr>
<td>AST003 (A) 22-033</td>
<td>Vehicle Maintenance Shop, Main Shop</td>
<td>Oils and Lubricants, Unused</td>
<td>(65)</td>
</tr>
<tr>
<td>AST004 (A) 22-033</td>
<td>Vehicle Maintenance Shop, Main Shop</td>
<td>Oils and Lubricants, Unused</td>
<td>(65)</td>
</tr>
<tr>
<td>AST005 (A) 22-033</td>
<td>Vehicle Maintenance Shop, Main Shop</td>
<td>Oils and Lubricants, Used</td>
<td>(500)</td>
</tr>
<tr>
<td>DS001 (A) 22-033</td>
<td>Vehicle Maintenance Shop, None</td>
<td>Oils and Lubricants, Unused</td>
<td>(220)</td>
</tr>
<tr>
<td>DS002 (A) 22-033</td>
<td>Vehicle Maintenance Shop, None</td>
<td>Oils and Lubricants, Used</td>
<td>(220)</td>
</tr>
</tbody>
</table>

1. Containment area is dry or has a minimal level of standing water.
2. There is no evidence of release or regulated substance in containment area or interstitial space between tanks (check pop-up sensor).
3. Drain valves are secured in closed position and have no debris or fire hazard present. All valves in tank system function properly.
4. Containment structures are in good condition and free from cracks, chipping or other damage, and in good condition.
5. For tank equipped with leak detection, overfill or gauging equipment installed, system is functioning properly.
6. For underground tank, tank sump and spill bucket (fill line) does not have evidence of free product, water and debris.

Part C. Safety Precautions & General Conditions

Review containment areas associated with containers and tanks and indicate whether the following criteria are met. Indicate "Yes", "No" or "N/A" for each item. For any answer indicated as "No", indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

<table>
<thead>
<tr>
<th>Container ID</th>
<th>Location</th>
<th>Substance</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST001 (A) 22-033</td>
<td>Vehicle Maintenance Shop, Northeast Side</td>
<td>Diesel Fuel, Fuel Oil</td>
<td>No 2 (280)</td>
</tr>
<tr>
<td>AST002 (A) 22-033</td>
<td>Vehicle Maintenance Shop, Northeast Side</td>
<td>Gasoline, Unleaded</td>
<td>(525)</td>
</tr>
<tr>
<td>AST003 (A) 22-033</td>
<td>Vehicle Maintenance Shop, Main Shop</td>
<td>Oils and Lubricants, Unused</td>
<td>(65)</td>
</tr>
<tr>
<td>AST004 (A) 22-033</td>
<td>Vehicle Maintenance Shop, Main Shop</td>
<td>Oils and Lubricants, Unused</td>
<td>(65)</td>
</tr>
<tr>
<td>AST005 (A) 22-033</td>
<td>Vehicle Maintenance Shop, Main Shop</td>
<td>Oils and Lubricants, Used</td>
<td>(500)</td>
</tr>
<tr>
<td>DS001 (A) 22-033</td>
<td>Vehicle Maintenance Shop, None</td>
<td>Oils and Lubricants, Unused</td>
<td>(220)</td>
</tr>
<tr>
<td>DS002 (A) 22-033</td>
<td>Vehicle Maintenance Shop, None</td>
<td>Oils and Lubricants, Used</td>
<td>(220)</td>
</tr>
</tbody>
</table>

1. Safety equipment is in place and operative. Fire extinguishers in place.
2. Tank system secured to prevent vandalism and unauthorized use.
3. Spill response supply at each location is adequate to respond to spill at that location.
4. There are no other conditions that should be addressed for continued safe operation or that may affect the site SPCC plan.
5. Information on site map & list is complete and accurate.

Findings/Comments:
Part A. Tank/Container Visual Check

Review all containers and tanks, piping and associated equipment and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as “No”, indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Labels and signage for tank/containment area in place, legible and accurate (USTs must be color-coded).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Exterior of tank or container(s), including paint and coatings, is in good condition, with no evidence of leaking around the tank/container, concrete pad or ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Tank openings are properly sealed and vents are clear of obstructions.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Above-ground piping, valves, pumps, tank sensors and associated equipment are in good condition with no evidence of leaking.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Below-ground piping, valves, pumps, tank sensors and associated equipment are in good condition with no evidence of leaking.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Dispenser and pump area, including hose, swivels, nozzle & breakaway (if present) are in good condition and with no evidence of leaking.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Level gauge/sight glass (if present) is readable and in good condition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Foundations and supports are structurally sound, free from corrosion and other damage, and in good condition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Grounding straps, wires and sensors are secure, free from corrosion and other damage and in good condition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Individual containers are closed, labeled and completely in containment area.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Individual containers do not have any noticeable container distortions, buckling, denting or bulging evident.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part B. Containment Areas and Release Detection Equipment

Review containment areas associated with containers and tanks and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as “No”, indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD001 (A) 22-054 The Oswald Visitor Center, Loading Dock</td>
<td>Cooking Oil, Used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEN001 (A) 22-005 Froghollow Classroom, East Side</td>
<td>Diesel Fuel, Fuel Oil No 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Containment area is dry or has a minimal level of standing water.
2. There is no evidence of release or regulated substance in containment area or interstitial space between tanks (check pop-up sensor).
3. Drain valves are secured in closed position and have no debris or fire hazard present. All valves in tank system function properly.
4. Containment structures are in good condition and free from cracks, chipping or other damage, and in good condition.
5. For tank equipped with leak detection, overfill or gauging equipment installed, system is functioning properly.
6. For underground tank, tank sump and spill bucket (fill line) does not have evidence of free product, water and debris.

Part C. Safety Precautions & General Conditions

Review containment areas associated with containers and tanks and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as “No”, indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD001 (A) 22-054 The Oswald Visitor Center, Loading Dock</td>
<td>Cooking Oil, Used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEN001 (A) 22-005 Froghollow Classroom, East Side</td>
<td>Diesel Fuel, Fuel Oil No 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Safety equipment is in place and operative. Fire extinguishers in place.
2. Tank system secured to prevent vandalism and unauthorized use.
3. Spill response supply at each location is adequate to respond to spill at that location.
4. There are no other conditions that should be addressed for continued safe operation or that may affect the site SPCC plan.
5. Information on site map & list is complete and accurate.

Findings/Comments:
Instructions: This form is specific to the operational area noted above. Complete this inspection form annually for each regulated oil-filled equipment for proper operation, damage, leaks and suitability for continued service. Any oil-filled equipment at this Facility with a reservoir capacity of more than 55 gallons is subject to regulation. Forward completed checklists monthly to campus EHS staff; EHS staff maintains inspection documentation onsite for 3 years from the date of the inspection.

<table>
<thead>
<tr>
<th>Date and time of inspection:</th>
<th>Name of inspector:</th>
</tr>
</thead>
</table>

Part A. Container Visual Check

Review all oil-filled equipment, piping and associated equipment and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as “No”, indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

<table>
<thead>
<tr>
<th>HE001 (A)</th>
<th>HE002 (A)</th>
<th>HE003 (A)</th>
<th>TR001 (A)</th>
<th>TR002 (A)</th>
<th>TR003 (A)</th>
<th>TR004 (A)</th>
<th>TR005 (A)</th>
<th>TR006 (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-054 The Oswald Visitor Center, 112 Hydraulic Fluid (107)</td>
<td>22-054 The Oswald Visitor Center, 112 Hydraulic Fluid (131)</td>
<td>22-012 Snyder Education and Conservatory, 10 Dielectric Fluid (233)</td>
<td>22-054 The Oswald Visitor Center, Loading Dock</td>
<td>22-054 The Oswald Visitor Center, South Side</td>
<td>22-031 Learning Center, Northeast Side Dielectric Fluid (233)</td>
<td>22-004 Ordway Picnic Shelter, Near irrigation pump for Green Heron</td>
<td>22-062 Bee Discovery, Southwest Side</td>
<td>21-011 Old Garage, South Side Dielectric Fluid (340)</td>
</tr>
</tbody>
</table>

1. Labels and signage for reservoir is in place, legible and accurate.

2. Exterior of reservoir, including paint and coatings, is in good condition, with no evidence of leaking around the reservoir, concrete pad or ground.

3. Above-ground piping, valves, pumps, sensors and associated equipment are in good condition with no evidence of leaking.

4. Foundations and supports are structurally sound, free from corrosion and other damage, and in good condition.

5. Grounding straps, wires and sensors are secure, free from corrosion and other damage and in good condition.
Part B. Containment Areas

Review containment areas associated with oil-filled equipment and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as “No”, indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

| HE001 (A) | 22-054 The Oswald Visitor Center,112 | 112 Hydraulic Fluid (107) | HE002 (A) | 22-054 The Oswald Visitor Center,112 | 112 Hydraulic Fluid (131) | HE003 (A) | 22-012 Snyder Education And Conservatory,10 | TR001 (A) | 22-054 The Oswald Visitor Center Loading Dock | TR002 (A) | 22-054 The Oswald Visitor Center,South Side | TR003 (A) | 22-031 Learning Center,Northeast Side | TR004 (A) | 22-004 Ordway Picnic Shelter,Near Irrigation pump for | TR005 (A) | 22-006 Bee Discovery,Southwest Side | TR006 (A) | 21-011 Old Garage,South Side | Dielectric Fluid (340) |
|-----------|--------------------------------------|--------------------------|-----------|--------------------------------------|--------------------------|-----------|---|-----------|---|-----------|---|-----------|---|-----------|---|-----------|---|

1. Containment area (room or elevator pit) is dry or has a minimal level of standing water.

2. There is no evidence of release or regulated substance in containment area.

3. Containment structures are in good condition and free from cracks, chipping or other damage, and in good condition.

Part C. Safety Precautions & General Conditions

Review safety precautions in the area of the oil-filled equipment and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as “No”, indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

| HE001 (A) | 22-054 The Oswald Visitor Center,112 | 112 Hydraulic Fluid (107) | HE002 (A) | 22-054 The Oswald Visitor Center,112 | 112 Hydraulic Fluid (131) | HE003 (A) | 22-012 Snyder Education And Conservatory,10 | TR001 (A) | 22-054 The Oswald Visitor Center Loading Dock | TR002 (A) | 22-054 The Oswald Visitor Center,South Side | TR003 (A) | 22-031 Learning Center,Northeast Side | TR004 (A) | 22-004 Ordway Picnic Shelter,Near Irrigation pump for | TR005 (A) | 22-006 Bee Discovery,Southwest Side | TR006 (A) | 21-011 Old Garage,South Side | Dielectric Fluid (340) |
|-----------|--------------------------------------|--------------------------|-----------|--------------------------------------|--------------------------|-----------|---|-----------|---|-----------|---|-----------|---|-----------|---|-----------|---|

1. Safety equipment is in place and operative. Fire extinguishers in place.

2. There are no other conditions that should be addressed for continued safe operation or that may affect the site SPCC plan.

3. Information on site map & list is complete and accurate.

Findings/Comments: