The University of Minnesota, Morris (UMM) provides a rigorous undergraduate liberal arts education, preparing its students to be global citizens who value and pursue intellectual growth, civic engagement, intercultural competence, and environmental stewardship.

As a public land-grant institution, UMM is a center for education, culture, and research for the region, nation, and world. UMM is committed to outstanding teaching, dynamic learning, innovative faculty and student scholarship and creative activity, and public outreach. Our residential academic setting fosters collaboration, diversity, and a deep sense of community.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Plan Certifications</th>
<th>SPCC Cross Reference</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>112.3(d), 112.7</td>
<td>5</td>
</tr>
</tbody>
</table>

Part 1. Introduction

1.1 Plan Purpose
1.2 Plan Accessibility
1.3 Spill History
1.4 Responsible Parties and Plan Contact Information
1.5 Planning Team

Part 2. Facility Description

2.1 Facility Location
2.2 Facility Drainage
2.3 Facility Operations
2.4 Oil Storage Containers

Table 1. UMM Regulated Container Details by Operational Responsibility

2.5 Security
2.6 Substantial Harm Determination

Part 3. Spill Prevention Measures

Table 2. UMM Spill Potential for Oil Storage and Operations

3.1 Demonstration of Facility Practicability
3.2 Facility Design Countermeasures
3.3 Procedural Countermeasures
3.4 Drainage from Diked Areas
3.5 Personnel Training

Part 4. Contingency Plan for Spills

4.1 Containment and Cleanup
4.2 Reporting Requirements
4.3 Disposal Requirements

Part 5. Documentation and Recordkeeping

5.1 Regulatory Notifications
5.2 Recordkeeping
5.3 Plan Revisions
Table 3. Log of Plan Revisions
Tables
Table 1 UMM Regulated Container Details by Operational Responsibility
Table 2 UMM Spill Potential for Oil Storage and Operations
Table 3 Log of SPCC Plan Revisions

Figures
Figure 1 Site Location Map
Figure 2 Regulated Container Location Map
Figure 3 Storm Sewer Map

Appendices
Appendix A Environmental Fact Sheet: “Responding to Spills and Releases”
Appendix B Spill Reporting Form
Appendix C Environmental Fact Sheet: “Management of Tanks and Containers”
Appendix D Environmental Fact Sheet: “Evaluation of Liquids in Secondary Containment or Other Sump Areas”
Appendix E Bulk Container Detail Sheets
Appendix F Hydraulic Equipment Detail Sheets
Appendix G Electrical Transformer Detail Sheets
Appendix H Certification of Substantial Harm Determination Form
Appendix I Plan Inspection Checklists
 - Monthly Tank/Container Inspection Form UMM Transportation Garage
 - Monthly Tank/Container Inspection Form UMM-Heating Plant
 - Annual OFE Inspection Form – UMM Elevators
 - Annual OFE Inspection Form – UMM Transformers
Engineer's Certification

I hereby certify that I have examined the University of Minnesota Morris Facility and, being familiar with the provisions of 40 CFR, Part 112 and Minnesota Statutes, Chapter 115E, attest that this Plan has been prepared in accordance with good engineering practices.

Matthew L. Ledvina, PE
Registration Number: 19794
State: Minnesota

Date: 4/19/16

Certification and Management Approval

This document is intended to minimize the potential to adversely impact its environment and to attain/maintain compliance with 40 CFR 112 and Minn. Stat. Chapter 115E.

Full approval is extended by Management at a level with authority to commit the necessary resources.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Jacqueline Johnson, Chancellor, UMM

Date: 4/19/16

Ken Kerns, Assistant Vice President
University Health and Safety

Date: 4/19/16
Part 1. Introduction

1.1 Plan Purpose

The University of Minnesota Morris stores and uses oil in support of operations and maintenance of the campus. This combined Spill Prevention Control and Countermeasures (SPCC) and Spill Bill Plan (Plan) is developed to provide UMM personnel with a document that outlines the steps for preventing environmental releases of oil products and to ensure the safety of personnel, the community, and the environment should a release occur.

For the purposes of SPCC planning, facilities with an aggregate capacity of more than 1,320 gallons of oil contained in tanks and containers more than 55 gallons in size are required to prepare and implement a Plan. While Underground Storage Tanks (USTs) regulated by Minn. R. 7150 are not subject to inclusion in the SPCC Plan if the total buried capacity is less than 42,000 gallons, USTs at this Facility are included in this Plan for completeness in describing the totality of tanks and containers with oil at the Facility, as well as to comply with the requirements of the State spill planning requirements.

This document satisfies the requirements of the Federal Oil Pollution Prevention Regulations (40 CFR, Part 112) and the Prevention and Response (P&R) Plan requirements of the Oil and Hazardous Substance Discharge Preparedness Regulations (Minnesota Statutes, Chapter 115 E), also known as the Minnesota Spill Bill.

1.2 Plan Accessibility

The combined Plan is accessible at the Facility and maintained in Camden Hall in the office of the Environmental Health and Safety Specialist (EHS) Specialist. The current version of this Plan is maintained electronically on the DEHS webpage site at:

http://www.dehs.umn.edu/envircomp_sp.htm

1.3 Spill History

Although the requirement to provide a Spill History was eliminated with the 2002 revision of the SPCC rule, past spill response and control measure are reviewed to determine if they are a predictor for future spill events. At UMM, there have been no spills of greater than 42 gallons for the three year period prior to development of this Plan. Records of spill events will be reviewed prior to any Plan revision to determine the need to modify the Plan in response to a spill.

1.4 Responsible Parties and Plan Contact Information

Facility Owner and Operator
University of Minnesota, Morris
600 E 4th St
Morris, MN 56267
(320) 589-6020

Plan Contact
Dean Olsen, Environmental Health and Safety Specialist (Morris Campus)
(320) 589-6106
1.5 **Planning Team**

Plan compliance at UMM is implemented by the Planning Team, which consists of centralized and site-located EHS staff, as well as operational staff responsible for day-to-day activities in their respective operational areas. It is the responsibility of each business group, as defined by this section, to manage regulated containers within their respective business group’s geographic area or scope of work. The names of key personnel, office and cell telephone numbers are listed as follows, along with responsibilities for each team member.

Chancellor, UMM

Jacqueline Johnson, Chancellor, University of Minnesota-Morris
(320) 589-6020

Responsibilities:
- Signatory authority.
- Review and approve all stages of plan development and implementation.
- Direct identified personnel to implement this Plan and the proper implementation of related control measures.
- Direct the training of identified personnel.
- Direct inspections to be completed to ensure compliance with this Plan.
- Direct timely preventive maintenance and good housekeeping procedures be carried out.
- Direct timely update of this Plan, as needed.
- Direct maintenance of Plan records, including inspection and incident records related to this plan and tanks identified in this plan.

Environmental Health and Safety Staff

Dean Olsen, Morris Campus EHS Specialist
(320) 589-6106

Julianne Rantala, Environmental Compliance Specialist
(612) 626-7957

Responsibilities:
- Emergency contact (Campus EHS staff)
- UST Certified Operator (Class A: Environmental Compliance Specialist, Class B: Campus EHS Specialist).
- Review and approve all stages of plan development and implementation.
- Identify appropriate personnel and respective training needs to effectively implement this Plan and the proper implementation of related control measures.
- Implement training of identified personnel.
- Monitor inspections and compile inspection records.
- Monitor compliance with the provisions of this Plan, identify non-compliance and corrective actions required. Coordinate completion of corrective actions, notifying management as necessary to direct actions.
- Ensure update of this Plan, as needed.
- Ensure maintenance of Plan records, including inspection and incident records related to this plan and regulated containers, ASTs and USTs identified in this plan.

Heating Plant Staff

Bill Eiler, Operations & Maintenance Supervisor
(320) 589-6110

Responsibilities:
- Emergency contact for issues at the Heating Plant.
- UST Class B Certified Operator; train Class C certified operators at Heating Plant.
- Contain and cleanup spills of significant materials.
- Attend assigned training.
- Practice good housekeeping and implement other control measures as specified in this Plan.
- Conduct inspections required by this Plan for operational area of responsibility.
- Review monthly UST leak detection report, perform annual automatic tank gauging (ATG) testing and other required UST maintenance.
- Initiate investigation and/or corrective action/s related to inspections, test results and other information pertaining to the containers and tanks subject to this Plan.
- Initiate the spill response and Spill Reporting Procedure, as necessary. The most recent version of this procedure is maintained electronically on the University EHS webpage at: http://www.dehs.umn.edu/envircomp_sp.htm.
- Identify appropriate and timely updates of the Plan, including any site diagrams, maps or attachments, and facilitate update by Environmental Compliance staff.

Transportation Garage Staff

General Maintenance Supervisor

(320) 589-6107

Responsibilities:
- Emergency contact for issues at the Transportation Garage.
- UST Class B Certified Operator; train Class C certified operators in Garage.
- Contain and cleanup spills of significant materials.
- Attend assigned training.
- Practice good housekeeping and implement other control measures as specified in this Plan.
- Conduct inspections required by this Plan for operational area of responsibility.
- Review monthly UST leak detection reports, perform annual ATG testing and other required UST maintenance.
- Initiate investigation and/or corrective action/s related to inspections, test results and other information pertaining to the containers and tanks subject to this Plan.
- Initiate the spill response and Spill Reporting Procedure, as necessary. The most recent version of this procedure is maintained electronically on the University EHS webpage at: http://www.dehs.umn.edu/envircomp_sp.htm.
- Identify appropriate and timely updates of the Plan, including any site diagrams, maps or attachments, and facilitate update by Environmental Compliance staff.

Dining Services Staff: Grease Dumpster

Tony Nemmers, Dining Services General Manager

(320) 589-7016

Midwest Grease, Bob Robish (contract services)

(507) 245-3060

Responsibilities:
- Emergency contact for issues at the dining hall.
- Contain and cleanup spills of significant materials.
- Attend assigned training.
- Practice good housekeeping and implement other control measures as specified in this Plan.
- Conduct inspections required by this Plan for operational area of responsibility.
- Initiate investigation and/or corrective action/s related to inspections, test results and other information pertaining to the containers and tanks subject to this Plan.
- Initiate the spill response and Spill Reporting Procedure, as necessary. The most recent version of this procedure is maintained electronically on the University EHS webpage at: http://www.dehs.umn.edu/envircomp_sp.htm.
- Identify appropriate and timely updates of the Plan, including any site diagrams, maps or attachments, and facilitate update by Environmental Compliance staff.
Facilities Management: Transformers
Mike Miller, Lead Electrician (320) 808-4990

Responsibilities:
- Emergency contact for issues with transformers throughout UMM campus.
- Contain and cleanup spills of significant materials.
- Attend assigned training.
- Practice good housekeeping and implement other control measures as specified in this Plan.
- Conduct inspections required by this Plan for operational area of responsibility.
- Initiate investigation and/or corrective action/s related to inspections, test results and other information pertaining to the containers and tanks subject to this Plan.
- Initiate the spill response and Spill Reporting Procedure, as necessary. The most recent version of this procedure is maintained electronically on the University EHS webpage at: http://www.dehs.umn.edu/envircomp_sp.htm.
- Identify appropriate and timely updates of the Plan, including any site diagrams, maps or attachments, and facilitate update by Environmental Compliance staff.

Facilities Management: Hydraulic Elevator Equipment
Bill Eiler, Operations & Maintenance Supervisor (320) 589-6110
Otis Elevator Inc. Contract Services (701) 367-0465

Responsibilities:
- Emergency contact for issues with hydraulic elevator equipment throughout UMM campus.
- Contain and cleanup spills of significant materials.
- Attend assigned training.
- Practice good housekeeping and implement other control measures as specified in this Plan.
- Conduct inspections required by this Plan for operational area of responsibility.
- Initiate investigation and/or corrective action/s related to inspections, test results and other information pertaining to the containers and tanks subject to this Plan.
- Initiate the spill response and Spill Reporting Procedure, as necessary. The most recent version of this procedure is maintained electronically on the University EHS webpage at: http://www.dehs.umn.edu/envircomp_sp.htm.
- Identify appropriate and timely updates of the Plan, including any site diagrams, maps or attachments, and facilitate update by Environmental Compliance staff.

Part 2. Facility Description
UMM provides education and research facilities on a 125-year-old campus in Morris, Minnesota. The first buildings housed an American Indian boarding school, and was later transferred to the State of Minnesota. In September 1960, UMM opened its doors and began fulfilling its institutional vision to be an affordable, undergraduate, intentionally small, residential, public liberal arts college. UMM is a national leader in green initiatives—wind energy, biomass energy, Pride of the Prairie local sustainable food projects. Its goal is to be a carbon neutral campus.

As part of operations and maintenance of the University, the Facility handles and stores significant volumes of oil/petroleum products used for vehicle fueling, maintenance of vehicles, hydraulic elevators, transformers and cooking fats. These categories and specific locations are discussed in detail in Part 3 of this Plan.
2.1 Facility Location

This Facility consists of multiple, adjacent parcels with the address of 600 East 4th Street, Morris, MN 56267. The Facility is located in sections 35 and 36 of Township 125N, Range 42W and Latitude 45.589773, Longitude -95.901221. Figure 1 depicts the general Facility location.

The locations of regulated oil containers and equipment on the UMM campus are shown on Figure 2. Due to the large number of containers and equipment located throughout the Facility, details of each location are contained in the SPCC Plan appendices, and are referenced in Tables 1 through 4 with a unique map number.

2.2 Facility Drainage

This description is provided in accordance with 40 CFR 112.7(e) (1). The elevation of the Facility ranges from approximately 1110 to 1150 feet above sea level (MSL) with the highest point in the central portion of the Facility. The overall surface water drainage for the area is toward the Pomme DeTerre River, located roughly 3,000 feet to the east.

Surface water runoff from the Facility is radially from the central area. The storm sewer layout for UMM is presented as Figure 3. The majority of storm sewer infrastructure is associated with roadways and parking lots where numerous catch basins direct stormwater to four outfalls which are located on the north, east and south sides of the property. From the outfall locations, stormwater flows overland to the Pomme DeTerre River. Storm sewer piping on the western side of the Facility is directed to the storm sewer infrastructure for Martin Luther King Drive, maintained by the City of Morris.

2.3 Facility Operations

The Facility administrative hours of operation are typically 8:00 a.m. to 4:30 p.m., Monday through Friday. Operations which involve the active management of oil in regulated quantities include the Transportation Garage, Heating Plant and Dining Service.

Transportation Garage

The Facility conducts fueling and maintenance of off-road and on-road UMM vehicles. There are two underground storage tanks (USTs) and associated dispensers for vehicle fueling. Fueling procedures are described in subsequent sections. Limited maintenance of UMM vehicle and equipment is performed at the Transportation Garage (Bldg. 741); maintenance of large equipment is completed at various locations onsite and at offsite locations by contract vendors. Equipment washing is done on a limited basis; detergents are not used in washing operations. There are new and used oil ASTs associated with the Transportation Garage; there are no drum storage areas associated with this operation. The locations of the ASTs and USTs associated with the transportation garage, are listed in Table 1 and depicted in Figure 2 (site 41).

UMM utilizes a contract vendor for delivery of diesel fuel and new oil products on an as-needed basis; new oil is pumped directly into ASTs. Used oil is also removed from the Facility by a contract vendor.

Heating Plant

The Heating Plant, campus boilers and HVAC units are operated by Facilities Management. The Heating Plant, Bldg. 754, is fueled with natural gas, with No. 2 fuel oil as a backup supply in the event that natural gas use is curtailed by the utility.
A large UST for No. 2 Fuel oil is located north of the Heating Plant building as indicated on Table 1 and Figure 2 (site 54). There are no bulk containers of oil at the Heating Plant above the 55-gallon threshold capacity and there are no regulated oil ASTs. The hydraulic equipment within the Heating Plant does not contain reservoirs greater than 55-gallons capacity, with the exception of the charging ram equipment for the biomass combustion unit, as indicated in Table 1.

Dining Service

The UMM Dining Service prepares meals in the Student Dining Hall Building (Bldg. 756). Waste food oils and grease are collected for recycling in an approximately 250 gallon dumpster. Midwest Grease, Redwood Falls MN, periodically empties the grease dumpster and removes the material from the UMM for offsite recycling. The dumpster is stored at the loading dock of the Student Dining Hall Building, as depicted on Figure 2 (site 56).

2.4 Oil Storage Containers

All fixed and mobile containers that have a capacity of 55 gallons and larger are subject to the requirements of the SPCC Plan, including containers associated with oil-filled equipment. The DEHS Fact Sheet: “Management of Tanks and Containers” (Appendix C) provides guidance on best practices for SPCC regulated containers. Locations of oil products and spill response equipment and materials are shown on Figure 2.

All oil storage containers are used in accordance with the implied intent of the manufacturers and are fully compatible with the material they hold and the environmental conditions to which they can be reasonably expected to be subjected. None of the containers are used to store material at greater than atmospheric pressure. The USTs installed at the Facility are not required to be cathodically protected.

Total regulated storage capacity of oil products at the Facility is calculated to be approximately 5,000 gallons. Analysis of the potential container and equipment failures that could result in a spill at the Facility is presented in Part 3 of this Plan.

Minnesota Rules chapter 7151 and chapter 7150 stipulate the requirements for management of above- and under-ground storage tanks (ASTs and USTs) in Minnesota, respectively. The Minnesota Pollution Control Agency (MPCA) requires the registration of tanks ASTs and USTs greater than 500 gallons in size. ASTs must be labeled indicating the substance stored and the tank capacity. The three USTs located at the Facility are registered, and are otherwise managed in accordance with UST rules. All other ASTs are below the 500 gallon threshold for registration, but are labeled and otherwise inspected in accordance with AST rules.

Bulk Oil Containers

The used oil AST (AST001) is a 260-gallon single wall steel tank located inside a secondary containment dike capable of containing a volume of liquid of the tank capacity plus sufficient freeboard. The storage capacity and contents of this tank is shown in Table 1. Four other new oil ASTs (AST002 through AST005) are also located in the same containment area. The new oil ASTs are polyethylene with a 75-gallon capacity and are used to store new lubricants for vehicle maintenance.

The food oil and grease dumpster is the only other bulk oil container. The dumpster is equipped with secondary containment to contain potential leaks/spills. The details for all regulated bulk oil containers are presented in Table 1 by operational responsibility. Appendix E consists of a Bulk Container Detail Sheet for each location identified in Table 1.
and Figure 2, and provides the physical details, including a photo, site detail map, containment equipment and drainage flow directions for each regulated container.

Hydraulic Equipment

There are eleven active hydraulic elevators and one hydraulic stage lift located in ten campus buildings. Each elevator and stage lift consists of a storage container, a hydraulic pump, steel delivery lines, and an elevator pit that contains the elevator’s hydraulic ram. Each of the storage containers and pumps are located inside elevator equipment storage rooms. Leaks from these containers or pumps typically would result in oil pooling on the floor of the room, the elevator pit or the adjacent hallways.

In the case of the Science Building 750 west and Social Science Building 725, drains are located outside the rooms containing the hydraulic reservoirs. In general, major leaks for the hydraulic reservoirs will be confined to the floor of the rooms or elevator pits.

In the standard operation of hydraulic elevators, there is a small amount of oil that gets past the seal located at the top of the hydraulic cylinder. This oil drains back into a five-gallon bucket or to a scavenger pump. If the bucket overflows or the scavenger pump fails, this oil ends up on the pit floor and is cleaned up using floor oil dry or absorbent pads.

The hydraulic ram equipment for the biomass burner located at the heating plant also includes two regulated hydraulic oil reservoirs.

The storage capacity and contents of hydraulic equipment reservoirs are shown in Table 1 by operational responsibility. Appendix F consists of a Hydraulic Elevator Detail Sheet for each location identified in Table 1 and Figure 2, and provides the physical details, including a photo, site detail map, containment equipment and drainage flow directions for each regulated Oil-filled Equipment (OFE).

Responsibility for operations and maintenance of hydraulic elevators is delegated to UMM contractor, Minnesota Elevator, Inc. The contractor is required to report spills of oil which are observed during service and repair activities to the UMM EHS Specialist. In addition, the contractor is required to complete the relevant inspection checklist contained in Appendix I on an annual basis. Completed inspections checklists are provided to the UMM EHS Specialist for review and corrective action follow-up, as needed.

Transformers

There are twenty two oil-filled transformers on the UMM campus which are regulated. There are nine transformers located in secure mechanical room spaces of the Dining Services Building (3), Gay Hall (3), Humanities Bldg (3); the remaining thirteen transformers are located outdoors adjacent to buildings.

Transformers are located throughout the campus as indicated on Figure 2. The storage capacity and contents of these containers is shown in Table 1, by operational responsibility. Appendix G consists of an Electrical Transformer Detail Sheet for each location identified in Table 1 and Figure 2, and provides the physical details, including a photo, site detail map, containment equipment and drainage flow directions for each regulated OFE. The lead electrician in the Facilities Management group is responsible for operation and maintenance of this equipment, as well as for performing annual inspections. The lead electrician is required to report spills of oil to the UMM EHS Specialist, which are observed during service and repair activities. Inspection checklist forms are contained in Appendix I.
Underground Storage Tanks

The locations of USTs at the Facility are indicated on Figure 2. A 30,000 gallon UST is associated with the Heating Plant and is used to store fuel oil, used as a backup fuel supply. Two 2,500 gallon USTs, adjacent to the Transportation Garage, contain diesel fuel and gasoline. The storage capacity and contents of USTs are shown in Table 1 by operational responsibility.

The Facility does not have any partially buried oil storage tanks.
<table>
<thead>
<tr>
<th>Owner</th>
<th>SPCC ID, UMN Asset ID</th>
<th>Location (Bldg No and Room/Details)</th>
<th>Location Coordinates (x,y)</th>
<th>Indoors?</th>
<th>Container Contents</th>
<th>Container Capacity (gal)</th>
<th>Container Material</th>
<th>Tank Leak Detect Type</th>
<th>Containment Type</th>
<th>Overfill Protect Type</th>
<th>Drains in Area</th>
<th>Oil Flow Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dining Services</td>
<td>GD001 (M), 756 - Dining Hall, Loading Dock</td>
<td>-10675421.4977, 5714801.9610000001</td>
<td>No</td>
<td>Cooking Oil, Used</td>
<td>226</td>
<td>Carbon Steel, Double Walled</td>
<td>Visual Monitoring, Steel None</td>
<td>Storm inlet-impermeable surface</td>
<td>To loading dock pavement area and then to storm sewer approximately 100 feet east.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Electric Utilities</td>
<td>TR001 (M), 754 - Heating Plant, West side</td>
<td>-10675283.1324, 5714617.68840000003</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>350</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None None</td>
<td>Storm inlet-impermeable surface</td>
<td>Oil would drain easterly 5 feet to trench storm drain.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Electric Utilities</td>
<td>TR002 (M), 756 - Dining Hall, SB</td>
<td>-10675458.9901, 5714749.43129999</td>
<td>Yes</td>
<td>Dielectric Fluid</td>
<td>74</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Concrete None</td>
<td>No inlet-impermeable surface</td>
<td>No floor drains in vicinity, would drain to floor of electrical room; 4 inch concrete curbing surrounding transformers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Electric Utilities</td>
<td>TR003 (M), 756 - Dining Hall, SB</td>
<td>-10675457.265000001, 5714749.6037999904</td>
<td>Yes</td>
<td>Dielectric Fluid</td>
<td>77</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Concrete None</td>
<td>No inlet-impermeable surface</td>
<td>No floor drains in vicinity, would drain to floor of electrical room; 4 inch concrete curbing surrounding transformers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Electric Utilities</td>
<td>TR004 (M), 756 - Dining Hall, SB</td>
<td>-10675455.539999999, 5714749.2588</td>
<td>Yes</td>
<td>Dielectric Fluid</td>
<td>74</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None None</td>
<td>No inlet-impermeable surface</td>
<td>No floor drains in vicinity, would drain to floor of electrical room; 4 inch concrete curbing surrounding transformers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Electric Utilities</td>
<td>TR005 (M), 749 - Clayton A. Gay Hall, 29B</td>
<td>-10675516.9030000001, 5714713.1314999899</td>
<td>Yes</td>
<td>Dielectric Fluid</td>
<td>82</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Concrete None</td>
<td>No inlet-impermeable surface</td>
<td>No floor drains in vicinity; 4 inch concrete curbing surrounding transformers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner</td>
<td>SPCC ID, UMN Asset ID</td>
<td>Location (Bldg No and Room/Details)</td>
<td>Location Coordinates (x,y)</td>
<td>Indoors?</td>
<td>Container Contents</td>
<td>Container Capacity (gal)</td>
<td>Container Material</td>
<td>Tank Leak Detect Type</td>
<td>Containment Type</td>
<td>Overfill Protect Type</td>
<td>Drains in Area</td>
<td>Oil Flow Direction</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>FM : Electric Utilities</td>
<td>TR006 (M), 749 - Clayton A. Gay Hall, 29B</td>
<td>-10675516.903000001, 5714713.1314999899</td>
<td>Yes</td>
<td>Dielectric Fluid</td>
<td>82</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Concrete</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>No floor drains in vicinity; 4 inch concrete curbing surrounding transformers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Electric Utilities</td>
<td>TR007 (M), 749 - Clayton A. Gay Hall, 29B</td>
<td>-10675516.903000001, 5714713.1314999899</td>
<td>Yes</td>
<td>Dielectric Fluid</td>
<td>82</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Concrete</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>No floor drains in vicinity; 4 inch concrete curbing surrounding transformers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Electric Utilities</td>
<td>TR008 (M), 715 - Spooner Hall, Southwest corner</td>
<td>-10675617.090600001, 5714744.94609999</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>161</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>None</td>
<td>Storm inlet-impermeable surface</td>
<td>Storm drain near Gay Hall; would flow southeast 75’ to storm drain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Electric Utilities</td>
<td>TR009 (M), 721 - Behmler Hall, North side to the south of TR010</td>
<td>-10675494.6392, 5714872.2054999899</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>353</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>No inlet or road with inlet nearby; would drain to concrete and gravel area surrounding transformer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Electric Utilities</td>
<td>TR010 (M), 725 - John Q Imholte Hall, North side to the north of TR009</td>
<td>-10675494.6392, 5714904.0213000001</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>241</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>No inlet or road with inlet nearby.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Electric Utilities</td>
<td>TR011 (M), 757 - On Campus Apartments-A Thru M, North side</td>
<td>-10675338.7921999999, 5714935.8365999898</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>161</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>No inlet or road with inlet nearby; would flow to gravel area near transformer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner</td>
<td>SPCC ID, UMN Asset ID</td>
<td>Location (Bldg No and Room/Details)</td>
<td>Location Coordinates (x,y)</td>
<td>Indoors?</td>
<td>Container Contents</td>
<td>Container Capacity (gal)</td>
<td>Container Material</td>
<td>Tank Leak Detect Type</td>
<td>Containment Type</td>
<td>Overfill Protect Type</td>
<td>Drains in Area</td>
<td>Oil Flow Direction</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>------------------------------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>FM : Electric Utilities</td>
<td>TR013 (M), 708 - Saddle Club Barn, Southeast corner</td>
<td>-10675405.583699999, 5714999.4673999902</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>33</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>Storm inlet-impermeable surface</td>
<td>Transformer is in vicinity to parking lot catch basin; would flow southerly 20 feet to storm drain.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Electric Utilities</td>
<td>TR014 (M), 716 - Camden Hall, Northwest corner</td>
<td>-10675617.090700001, 5714967.6518999999</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>103</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>No inlet-permeable surface</td>
<td>No catch basins in area; would flow northerly to grassy area.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Electric Utilities</td>
<td>TR015 (M), 745 - Humanities, 14B</td>
<td>-10675683.882200001, 5714967.6519999998</td>
<td>Yes</td>
<td>Dielectric Fluid</td>
<td>13</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Concrete None</td>
<td>No inlet-impermeable surface</td>
<td>No inlet in vicinity; 4 inch concrete curbing surrounding transformers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Electric Utilities</td>
<td>TR017 (M), 745 - Humanities, 14B</td>
<td>-10675683.882200001, 5714967.6519999998</td>
<td>Yes</td>
<td>Dielectric Fluid</td>
<td>13</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Concrete None</td>
<td>No inlet-impermeable surface</td>
<td>No inlet in vicinity; 4 inch concrete curbing surrounding transformers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner</td>
<td>SPCC ID, UMN Asset ID</td>
<td>Location (Bldg No and Room/Details)</td>
<td>Location Coordinates (x,y)</td>
<td>Indoors?</td>
<td>Container Contents</td>
<td>Container Capacity (gal)</td>
<td>Container Material</td>
<td>Tank Leak Detect Type</td>
<td>Containment Type</td>
<td>Overfill Protect Type</td>
<td>Drains in Area</td>
<td>Oil Flow Direction</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>FM: Electric Utilities</td>
<td>TR018 (M), TR018 (M)</td>
<td>717 - Welcome Center, Northeast corner</td>
<td>-10675572.562999999, 5715094.9145999998</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>219</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>None</td>
<td>No inlet/impermeable surface</td>
<td>No inlet or road with inlet nearby; would flow northerly into grassy area.</td>
<td></td>
</tr>
<tr>
<td>FM: Electric Utilities</td>
<td>TR019 (M), TR019 (M)</td>
<td>707 - Recycle Center, North side</td>
<td>-10675427.8476, 5715349.4457999896</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>109</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None</td>
<td>None</td>
<td>No inlet/impermeable surface</td>
<td>No inlet or road with inlet nearby; would flow northerly into grassy area.</td>
<td></td>
</tr>
<tr>
<td>FM: Elevators</td>
<td>HE001 (M), HE001 (M)</td>
<td>758 - Humanities Fine Arts, 40B</td>
<td>-10675680.4427, 5715045.3059</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>166</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel</td>
<td>None</td>
<td>Sanitary inlet/impermeable surface</td>
<td>Concrete floor; nearest inlet is in men's restroom ~50 feet away.</td>
<td></td>
</tr>
<tr>
<td>FM: Elevators</td>
<td>HE002 (M), HE002 (M)</td>
<td>745 - Humanities, 2</td>
<td>-10675710.558599999, 5714951.4461999899</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>85</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel</td>
<td>None</td>
<td>No inlet/impermeable surface</td>
<td>Concrete floor; elevator pit adjacent to reservoir.</td>
<td></td>
</tr>
<tr>
<td>FM: Elevators</td>
<td>HE003 (M), HE003 (M)</td>
<td>747 - Student Center, 19</td>
<td>-10675714.6132, 5714871.6114999996</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>156</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel</td>
<td>None</td>
<td>No inlet/impermeable surface</td>
<td>Concrete floor; elevator pit adjacent to reservoir.</td>
<td></td>
</tr>
<tr>
<td>FM: Elevators</td>
<td>HE004 (M), HE004 (M)</td>
<td>750 - Science, 1064</td>
<td>-10675739.541999999, 5714713.1316</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>234</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel</td>
<td>None</td>
<td>No inlet/impermeable surface</td>
<td>Concrete floor; elevator pit adjacent to reservoir.</td>
<td></td>
</tr>
<tr>
<td>Owner</td>
<td>Location (Bldg No and Room/Details)</td>
<td>Location Coordinates (x,y)</td>
<td>Indoors?</td>
<td>Container Contents</td>
<td>Container Capacity (gal)</td>
<td>Container Material</td>
<td>Tank Leak Detect Type</td>
<td>Containment Type</td>
<td>Overfill Protect Type</td>
<td>Drains in Area</td>
<td>Oil Flow Direction</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>FM : Elevators</td>
<td>750 - Science, Elevator Room</td>
<td>-10675839.729699999, 5714744.946099999</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>136</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>Concrete floor: No floor drains in area; earth drain located 8 feet away.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Elevators</td>
<td>721 - Behmler Hall, Elevator Rm</td>
<td>-10675510.859200001, 5714859.3953</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>166</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>Concrete floor; completely contained in 6x9’ room; piping penetrates through floor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Elevators</td>
<td>725 - John Q Imholte Hall, 12</td>
<td>-10675516.9014, 5714911.3179000001</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>80</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>No floor drains in area; earth drain located 10 feet away.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Elevators</td>
<td>756 - Dining Hall, Elevator Rm</td>
<td>-10675436.645400001, 5714779.1758999899</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>163</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel</td>
<td>None</td>
<td>Sanitary inlet-impermeable surface</td>
<td>Concrete floor: nearest floor drain is ~15 feet away.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Elevators</td>
<td>753 - Physical Education Center, 103A</td>
<td>-10675373.7752, 5714526.4155000001</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>156</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>Concrete floor; elevator pit adjacent to reservoir.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Elevators</td>
<td>758 - Humanities Fine Arts, Rm 20 (Stage Lift)</td>
<td>-10675689.967700001, 5715006.6766999997</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>136</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>Concrete floor; elevator pit adjacent to reservoir.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner</td>
<td>SPCC ID, UMN Asset ID</td>
<td>Location (Bldg No and Room/Details)</td>
<td>Location Coordinates (x,y)</td>
<td>Indoors?</td>
<td>Container Contents</td>
<td>Container Capacity (gal)</td>
<td>Container Material</td>
<td>Tank Leak Detect Type</td>
<td>Containment Type</td>
<td>Overfill Protect Type</td>
<td>Drains in Area</td>
<td>Oil Flow Direction</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>------------------------------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>FM : Engineering</td>
<td>HE011 (M), Contract# B1L9-OH</td>
<td>766 - Big Cat Stadium, Elevator Rm</td>
<td>-10675461.2436, 5714331.3647999903</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>80</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>Concrete floor; elevator pit adjacent to reservoir.</td>
<td></td>
</tr>
<tr>
<td>FM : Engineering</td>
<td>UST003 (M),</td>
<td>754 - Heating Plant, Outside</td>
<td>-10675249.7364000001, 5714649.5027000001</td>
<td>No</td>
<td>Diesel Fuel_Fuel Oil No 2</td>
<td>30000</td>
<td>Carbon Steel, Double Walled</td>
<td>Interstitial Monitoring, Steel</td>
<td>Automatic Shut-off, Level Gauge/Sensor</td>
<td>No inlet-impermeable surface</td>
<td>Flow would be into immediate tank area and then to parking lot area.</td>
<td></td>
</tr>
<tr>
<td>FM : Grounds/Transportation</td>
<td>AST001 (M),</td>
<td>741 - Transportation Garage, 1</td>
<td>-10675488.8552, 5715262.7938999897</td>
<td>Yes</td>
<td>Oils and Lubricants, Used</td>
<td>260</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel</td>
<td>None</td>
<td>No inlet-impermeable surface</td>
<td>Secondary containment; trench floor drains in area.</td>
<td></td>
</tr>
<tr>
<td>Owner</td>
<td>SPCC ID, UMN Asset ID</td>
<td>Location (Bldg No and Room/Details)</td>
<td>Location Coordinates (x,y)</td>
<td>Indoors?</td>
<td>Container Contents</td>
<td>Container Capacity (gal)</td>
<td>Container Material</td>
<td>Tank Leak Detect Type</td>
<td>Containment Type</td>
<td>Overfill Protect Type</td>
<td>Drains in Area</td>
<td>Oil Flow Direction</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>------------------------------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>FM : Grounds/Transportation</td>
<td>AST002 (M), 741 - Transportation Garage, 1</td>
<td>-10675487.475199999, 5715262.96639999</td>
<td>Yes</td>
<td>Oils and Lubricants, Unused</td>
<td>75</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel, Tank Level Gauge</td>
<td>Secondary containment; trench floor drains located approximately 20 feet south.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Grounds/Transportation</td>
<td>AST003 (M), 741 - Transportation Garage, 1</td>
<td>-10675486.095100001, 5715263.138999904</td>
<td>Yes</td>
<td>Oils and Lubricants, Unused</td>
<td>75</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel, Tank Level Gauge</td>
<td>Secondary containment; trench floor drains located approximately 20 feet south.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Grounds/Transportation</td>
<td>AST004 (M), 741 - Transportation Garage, 1</td>
<td>-10675484.369999999, 5715262.96639999</td>
<td>Yes</td>
<td>Oils and Lubricants, Unused</td>
<td>75</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel, Tank Level Gauge</td>
<td>Secondary containment; trench floor drains located approximately 20 feet south.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Grounds/Transportation</td>
<td>AST005 (M), 741 - Transportation Garage, 1</td>
<td>-10675482.645, 5715262.6219999905</td>
<td>Yes</td>
<td>Oils and Lubricants, Unused</td>
<td>75</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, Steel, Tank Level Gauge</td>
<td>Secondary containment; trench floor drains located approximately 20 feet south.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM : Grounds/Transportation</td>
<td>UST001 (M), 741 - Transportation Garage, Outside</td>
<td>-10675438.9794, 5715253.9961000001</td>
<td>No</td>
<td>Gasoline, Unleaded</td>
<td>2500</td>
<td>Fiberglass</td>
<td>Interstitial Monitoring, None, Automatic Shut-off, Level Gauge/Sensor</td>
<td>No inlet-permeable surface</td>
<td>Flow would be into immediate tank area and then to north parking lot area.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner Location</td>
<td>SPCC ID, UMN Asset ID</td>
<td>Location (Bldg No and Room/Details)</td>
<td>Location Coordinates (x,y)</td>
<td>Indoors?</td>
<td>Container Contents</td>
<td>Container Capacity (gal)</td>
<td>Container Material</td>
<td>Tank Leak Detect Type</td>
<td>Containment Type</td>
<td>Overfill Protect Type</td>
<td>Drains in Area</td>
<td>Oil Flow Direction</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------</td>
<td>-------------------------------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>FM: Grounds/T</td>
<td>UST002 (M), 741 - Transportation Garage, Outside</td>
<td>-10675438.9794, 5715253.9961000001</td>
<td>No</td>
<td>Diesel Fuel, Fuel Oil No 2</td>
<td>2500</td>
<td>Fiberglass</td>
<td>Interstitial Monitoring, None Automatic Shut-off, Level Gauge/Sensor</td>
<td>No inlet-impermeable surface</td>
<td>Flow would be into immediate tank area and then to north parking lot area.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>HE012 (M), 724 - Blakely Hall, 122</td>
<td>-10675522.904899999, 5714776.9908999996</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>19</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None None</td>
<td>No inlet-impermeable surface</td>
<td>There are no floor drains in this room. Piping from the unit goes up and into the wall. The other piping and conduit floor penetrations are sealed, so any leaks are contained within the room.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>HE013 (M), 767 - Recycle Center, Main</td>
<td>-10675440.6272, 5715311.6475999998</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>25</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None None</td>
<td>No inlet-impermeable surface</td>
<td>Flow would be onto concrete in main recycling center room.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>HE014 (M), 767 - Recycle Center, (floor material is Concrete)</td>
<td>-10675440.6272, 5715311.6475999998</td>
<td>Yes</td>
<td>Hydraulic Fluid</td>
<td>30</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None None</td>
<td>No inlet-impermeable surface</td>
<td>Flow would be onto concrete in main recycling center room.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottertail Power</td>
<td>TR020 (M), Other, Softball Fields East of Parking Lot; Center of softball fields (Outdoors)</td>
<td>-10675004.8334, 5714935.8365999898</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>100</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None None</td>
<td>Storm inlet-impermeable surface</td>
<td>Transformers are in vicinity to catch basin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner</td>
<td>SPCC ID, UMN Asset ID</td>
<td>Location (Bldg No and Room/Details)</td>
<td>Location Coordinates (x,y)</td>
<td>Indoors?</td>
<td>Container Contents</td>
<td>Container Capacity (gal)</td>
<td>Container Material</td>
<td>Tank Leak Detect Type Containment Type Overfill Protect Type</td>
<td>Drains in Area</td>
<td>Oil Flow Direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------</td>
<td>-------------------------------------</td>
<td>----------------------------</td>
<td>----------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>---</td>
<td>----------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottertail Power TR021(M),</td>
<td>Other, Soccer field; Pole mounted; West side of South parking lot.</td>
<td>-10675596.021, 5714396.18569999</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>7</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None None</td>
<td>Storm inlet-permeable surface</td>
<td>Transformers are in vicinity to catch basin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottertail Power TR022 (M),</td>
<td>766 - Big Cat Stadium, Events; West side (W of TR023)</td>
<td>-10675483.5075, 5714299.5516999997</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>208</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None None</td>
<td>Storm inlet-permeable surface</td>
<td>Transformers are in vicinity to catch basin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottertail Power TR023 (M),</td>
<td>766 - Big Cat Stadium, West side (W of TR023)</td>
<td>-10675483.5075, 5714299.5516999997</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>204</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None None</td>
<td>No inlet-permeable surface</td>
<td>Transformers are in vicinity to catch basin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottertail Power TR024(M), Other, City Water Tower; Pole mounted; South of South parking lot (Outdoors)</td>
<td>-10675550.299000001, 5714234.7314999998</td>
<td>No</td>
<td>Dielectric Fluid</td>
<td>8</td>
<td>Carbon Steel, Single Walled</td>
<td>Visual Monitoring, None None</td>
<td>Storm inlet-permeable surface</td>
<td>Transformers are in vicinity to catch basin.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.5 Security
The Facility is illuminated by lights in the evening and is attended by Site personnel during normal business hours. UMM campus police conducts surveillance rounds 24 hours a day.

Operations of vendors related to oil transfer are done under the supervision of UMM personnel in most cases, except when the driver has been previously instructed in safe dispensing and delivery techniques. All contractors are required to follow local, state, and federal requirements during unloading operations of oil.

The Facility is not completely fenced as required by provisions of the SPCC rule. The Facility operations and equipment provide "Equivalent Environmental Protection" to deter acts of vandalism or unauthorized access. This includes:

- Topography and partial fencing of the Facility prevents vehicle access for most regulated oil containers.
- Access to operational components for regulated oil containers is restricted. Equipment cannot be operated without electrical power. This equipment is secured during non-operational hours.
- The Facility has night-time security lighting at nearly all locations to discourage unauthorized access.
- Security cameras are positioned near some buildings to enable remote monitoring of the Facility.
- UMM campus police conduct surveillance rounds 24 hours a day.

The Facility does not have master flow valves for oil materials. All primary electrical controls are within secure areas when the Facility is unattended and in sight of UMM personnel during operating hours. There are no out-of-service pipelines at the Facility.

2.6 Substantial Harm Determination
The Oil Pollution Act of 1990 requires additional information and submission of the SPCC Plan to the EPA Regional Administrator if the facility could reasonably be expected to cause "substantial harm" to the environment by discharging oil into navigable water. The Facility does not pose "substantial harm" and therefore is not subject to this part of the Rule. A copy of the completed Certification of Substantial Harm Determination Form is included as Appendix H.
Part 3. Spill Prevention Measures

The Facility is designed, operated, and maintained to prevent spills, as documented in this section. The location of spill control equipment is shown on Figure 2.

Table 2 outlines the spill potential for the regulated containers subject to planning. Listed is the potential equipment failure event, spill description, volume potentially released and the rate of release as required by 40 CFR 112.7(b).

<table>
<thead>
<tr>
<th>Source or Potential Event</th>
<th>Maximum Potential Amount</th>
<th>Spill Direction</th>
<th>Spill Rate</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Containers and Fueling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure of Bulk Container</td>
<td>260 gallons</td>
<td>To secondary containment, then floor of building or outdoor concrete surface.</td>
<td>Gradual to instantaneous</td>
<td>Secondary containment. Spill kit materials will be used to contain spill</td>
</tr>
<tr>
<td>Failure of 55 gallon drum</td>
<td>56 gallons</td>
<td>To spill pallet and then floor of building.</td>
<td>Gradual to instantaneous</td>
<td>Secondary containment. Spill kit materials will be used to contain spill inside building.</td>
</tr>
<tr>
<td>Spill of 55 gallon drum during transfer operations or truck loading.</td>
<td>55 gallons</td>
<td>Directly to floor of building.</td>
<td>Gradual to instantaneous</td>
<td>Spill kit materials will be used to intercept spill</td>
</tr>
<tr>
<td>Truck loading operations at AST fill point.</td>
<td>50 gallons</td>
<td>To secondary containment, then floor of building. (maximum assumes 100 gpm for 30 seconds)</td>
<td>Gradual to near instantaneous</td>
<td>Attended by personnel. Secondary containment. Spill kit materials will be used to contain spill inside building.</td>
</tr>
<tr>
<td>Truck unloading operations at AST fill points.</td>
<td>50 gallons</td>
<td>To secondary containment, then floor of building. (maximum assumes 100 gpm for 30 seconds)</td>
<td>Gradual to near instantaneous</td>
<td>Attended by personnel. Spill kit materials will be used to intercept spill</td>
</tr>
<tr>
<td>Spill during transfer of used oil to used oil AST.</td>
<td>30 gallons</td>
<td>To floor of maintenance garage.</td>
<td>Gradual to instantaneous</td>
<td>Attended by personnel. Spill kit materials will be used to intercept spill</td>
</tr>
<tr>
<td>Equipment Fueling Station</td>
<td>25 gallons</td>
<td>To asphalt surface in vicinity of dispenser (maximum assumes 50 gpm for 30 seconds)</td>
<td>Gradual to near instantaneous</td>
<td>Attended by personnel. Spill kit materials will be used to intercept spill</td>
</tr>
<tr>
<td>Fuel delivery for UST</td>
<td>50 gallons</td>
<td>To asphalt surface in vicinity of dispenser (maximum assumes 100 gpm for 30 seconds)</td>
<td>Gradual to near instantaneous</td>
<td>Attended by personnel. Spill kit materials will be used to intercept spill</td>
</tr>
</tbody>
</table>
Oil-Filled Equipment (OFE)

<table>
<thead>
<tr>
<th>Failure of indoor OFE container.</th>
<th>166 gallons</th>
<th>To floor of electrical or elevator room.</th>
<th>Gradual to Instantaneous</th>
<th>Spill kit materials will be used to contain spill inside building.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure of outdoor transformer</td>
<td>350 gallons</td>
<td>To ground surface in the vicinity of container.</td>
<td>Gradual to Instantaneous</td>
<td>Spill kit materials will be used to contain spill in the vicinity of the equipment.</td>
</tr>
</tbody>
</table>

3.1 Demonstration of Facility Practicability

The Environmental Compliance Specialist, in accordance with 40 CFR 112.7(d), that the use of containment and diversionary structures or readily available equipment to prevent discharged oil products from reaching navigable waters is practical and effective for this Facility.

3.2 Facility Design Countermeasures

Spill Prediction

Table 2 and details for each regulated container (Appendices E, F and G) provide an assessment of potential scope for oil releases and a prediction for the direction of the spill. The highest potential for a spill event is associated with bulk transfer operations of new oil, used oils and fuels. Oil and fuels are brought to the Facility by Lees Oil Service, via tank truck. Spills can be contained in the immediate hard surface vicinity of the transfer connections and recovered with spill control equipment and supplies that are available on-site. For a major release, the spill would pool in low spots within the paved traffic and yard areas. In the event of a spill, temporary dikes or absorbent booms will be used to prevent the movement of oil at the Facility.

Valves and Piping

ASTs and piping are discussed in the following sections. Aboveground oil piping associated with regulated oil storage is adequately supported and insulated, where appropriate. Aboveground pipes, pipe joints and valves are inspected regularly for leaks. Aboveground oil piping at the Facility is not in danger from impact by vehicle traffic. Liquids in secondary containment areas are subject to a visual inspection, and contaminant testing, as described by the DEHS Environmental Fact Sheet: Evaluation of Liquids in Secondary Containment or Other Sump Areas, included as Appendix D to this Plan.

Underground Storage Tank Provisions

Owners and operators of USTs must comply with both state and federal regulations regarding USTs (Minn. R. chapter 7150 and 40 CFR Parts 280-282, respectively). The state regulations incorporate federal regulations and provide additional requirements as deemed appropriate by the MPCA. Minnesota is an “authorized” state by EPA and allowed to develop and enforce regulations in lieu of federal UST regulations. Additional requirements from state and local fire marshals focus on fire protection and are not contained in this Plan.

Requirements include operating procedures to monitor for leaks in the tank, tank piping, and pump systems, and provide for inspection of potential environmental effects of tank components. Release prevention of USTs at the Facility is described below, and in Table 1.
Leak Detection
The three USTs at the Facility utilize automatic tank gauging (ATG) for leak detection. An ATG system consists of a probe permanently installed in a tank and wired to a monitor to provide information on product level and temperature. ATG systems automatically calculate the changes in product volume that can indicate a leaking tank.

Once a month, USTs are automatically checked for the presence of water by the system installed test. If water is detected, it may be an indication that the UST is leaking and/or groundwater is migrating into the UST. If the results indicate a test fail, then a re-check is conducted as soon as possible. If a passing test cannot be obtained, the DEHS Environmental Fact Sheet: “Responding to Spills and Releases” contained in Appendix A should be consulted, and a Spill Report Form (Appendix B) be completed. Corrective actions for UST systems are be initiated on a timely basis.

Staff in the respective operational area are responsible for testing the leak detection system annually to ensure that it is working; conducting tests monthly and are readable; and to make sure the date and time are correct. The ATG operator’s manual should be consulted and the appropriate test should be run to confirm that the ATG system is set up and working properly.

Piping Leak Detection
The piping systems for USTs located at the Transportation Garage are wrapped steel, while the piping system at the Heating Plant is fiberglass. All dispensers are supplied with “safe suction” pumps located within the dispenser. Piping is sloped back the tank to enable drainage of product when the delivery system is not operating. Check valves, where present, are located as close as possible to the suction pump. The piping for these three tanks does not require piping leak detection.

Spill and Overfill Protection
The purpose of spill and overfill protection equipment is to eliminate the potential for a release during fuel deliveries. The equipment must be in working order and used properly to provide adequate protection from spills and overfills.

Spill buckets are inspected monthly to avoid the accumulation of liquids or debris, and are visually verified to be free of cracks or perforations, and that the drop tube is secure and properly positioned. Gaskets, covers and latches are verified monthly to be in place and functioning properly.

Overfill protection is required on USTs to ensure that they are not filled beyond their intended capacity. The three tanks at this Facility all equipped with an automatic shutoff device to prevent overfills.

Corrosion Protection
Steel tanks, components and piping materials present challenges to integrity when in contact with the ground. Specific rule provisions apply to tanks, components and/or piping in this situation. There are no tanks, components or piping at this Facility subject to corrosion protection requirements.
Spill Response Equipment and Materials

Spill response equipment and materials are placed in the locations shown on Figure 2. The typical spill response materials include the following at each location:

- Absorbent pads/materials
- Personnel protective equipment
- Poly or steel drums
- Tools for mechanical cleanup (broom, shovel, etc.).

Monthly inspections at each location verify that adequate spill response equipment and materials is available at each operational area that has containers or tanks subject to this Plan.

3.3 Procedural Countermeasures

Facility operating procedures limit the potential for releases of oil products.

Bulk Transfer Operations

Bulk transfer of oil products is required to meet the minimum requirements and regulations of 39 CFR Parts 172 and 177, established by the U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration. These regulations require each person who engages in cargo tank loading or unloading operations to perform a “risk assessment” of the loading and unloading operation and develop and implement safe operating procedures based upon the results of the risk assessment.

Prior to the initiation of transfer operations, the delivery personnel will verify the available capacity of the tank by direct reading of the tank. The bill of lading or other shipping documents will be checked to confirm the correct material and quantity is being delivered.

The delivery and loading of products is monitored by the physical presence of the truck driver. Truck drivers prevent premature departure by setting the parking brake prior to transfer. The brakes are not released until the bulk transfer has been completed, the lines stowed, and all of the valves are checked to ensure they are secured. Prior to transfer and departure of a truck, the bottom drain and all outlets are closely examined for leakage, and, if necessary, tightened to make sure no leak occurs.

Used oil is transferred from the used oil AST (AST001) using a truck-mounted transfer pump. The used oil is pumped from the storage tank to a transfer truck that is backed into the Transportation Garage. A line failure may cause a leak that could flow to the trench floor drains located in the transfer area. These drains flow to an oil water separator and then into the sanitary sewer. New oil is transferred into the AST002 through AST005 in a similar manner.

Waste food oils and grease which are collected in the dumpster (GD001) at the student dining hall are periodically emptied on a contract basis. A vacuum line is used to remove the contents of the dumpster. Potential spills during transfer would likely be contained within the concrete surfaced loading dock area. Based on the higher viscosity of the material, it is anticipated that a spill will not migrate a significant distance.

Maintenance

UMM staff in their respective operational area are responsible for routine and preventive maintenance to prevent spills and releases. In addition, these staff are responsible for reviewing monthly UST leak detection test results, and testing the leak detection system.
annually to ensure that it is working; conducting tests monthly and ensuring legibility; and to make sure the date and time set on equipment is correct.

If, based on inspections or periodic testing, it is determined that the integrity of the containers or auxiliary equipment is or may have been compromised or changes need to be made, the system will be taken out of service, the problem evaluated, and appropriate steps taken to correct deficiencies.

The oil/water separator in the Transportation Garage building is serviced on a routine basis to remove sediments and floating liquids. The UMM EHS Specialist will determine the frequency of routine servicing based on monitoring of the liquids and solids within the vessel. This enables the oil/water separator to function as a control measure for intercepting and containing oil spills which may occur. Prior to returning the oil/water separator to service after maintenance, it is refilled with water to ensure proper function in the event of an oil spill.

Inspection

Inspection procedures limit the possibility of a spill from equipment malfunction; obvious equipment failures will be repaired promptly. Each functional area is responsible for conducting inspections at the required frequency, and reporting findings to the EHS Specialist. Each functional area is responsible for operating and maintaining equipment to prevent releases. Responsible persons for each functional area, along with specific responsibilities for each role, are included in Part 1.6 of this Plan.

Combined monthly inspections are conducted by campus staff knowledgeable of Facility operations in their respective functional areas, characteristics of the liquid stored, the type of container and its associated components to comply with the requirements of Minn. R. 7152 (ASTs), 7150 (UST) and 40 CFR 112.7(e)(8) (SPCC). The inspection checklists included in Appendix H of this Plan include checklists for each functional area at the Facility to include all regulated tanks and containers.

Walk-through inspections of the Facility are conducted monthly for tanks and containers, and annually for oil-filled equipment, to make sure the essential equipment is working, and to focus specifically on detecting any change in conditions or signs of product leakage from the container, piping system, and appurtenances.

If there are problems identified during the inspection, staff within respective operational areas will take action quickly to resolve these problems and avoid releases.

UMM is deviating from the integrity testing provision of §112.8(c)(6) based on good engineering practice after considering bulk container installation and alternative measures, the requirements of Steel Tank Institute (STI) Standard SP-001, and alternative measures implemented by the Facility. The “environmental equivalence” for integrity testing is the routine visual inspection and documentation for Facility oil containers.

All containers regulated under SPCC requirements are shop-built (manufactured), completely above-ground and the surfaces of the containers are visible. The containers are not insulated, and the outside surfaces of the container shell can therefore be observed on an ongoing basis. The containers are located within properly sized containment in accordance with §112.8(c) (2), where required. Under SP-001, UMM ASTs are considered Category 1 tanks (ASTs with spill control and with continuous release detection method) and therefore require periodic inspection of the tank.
3.4 **Drainage from Diked Areas**

All oil containers with open secondary containment are located indoors to prevent the accumulation of precipitation within the secondary containment. Provisions for drainage from diked areas are not needed. Liquids in secondary containment areas are subject to a visual inspection, and contaminant testing, as described by the DEHS Environmental Fact Sheet: Evaluation of Liquids in Secondary Containment or Other Sump Areas, included as Appendix D to this Plan.

3.5 **Personnel Training**

The Environmental Compliance Specialist identifies and ensures employees involved in the handling and use of oil products are trained as described by this section. Specific training materials and elements covered are designed to meet the requirements of 40 CFR 112.7(f).

In addition, Minn. R. 7150 requires owners and/or operators of USTs to have a certified Class A Operator, Class B Operator, and Class C Operator designated at the Facility to operate and maintain the systems. An operator is certified indefinitely, unless there is a change in the components of the UST system. A trained or MPCA-certified operator must also be on-site during operating hours with certain exceptions.

For this Facility, the following individuals are named operators of the UST systems:

Class A Operator:
Julianne Rantala, Environmental Compliance Specialist
Mickey Rose, Transportation Garage
Wendell Erdman, Transportation Garage
Bill Eiler, Operations & Maintenance Supervisor

The Class A operator focuses on the broader aspects of regulatory requirements and standards including employee training on proper operation and maintenance of the UST system, record retention and emergency response procedures.

Class B Operators:
Bill Eiler, Operations & Maintenance Supervisor
Mickey Rose, Transportation Garage
Wendell Erdman, Transportation Garage

The Class B Operators are responsible for the day-to-day operations and implementation of applicable regulatory requirements at the Facility, in their respective operational area. The Class B Operator must be on site at least monthly to verify that all operational and maintenance tasks have been completed. The Class B operator trains all Class C maintenance technicians in their respective area for Class C certification.

Class C operators: any maintenance technician assigned to either the Transportation Garage or the Heating Plant.

A Class C Operator is on-site daily and is responsible as the initial responder to handle emergencies and alarms pertaining to a spill or release. Class C operator is typically an employee who controls or monitors the dispensing or sale of product.

Training includes the following items:
• The environmental hazards of accidental leaks and oil product spills and the necessity of preventative measures.
• Maintenance and inspection procedures.
• The proper operation of unloading, storage, pumping, piping, and other equipment. This includes proper startup and shutdown sequences; proper control procedures and process adjustments; proper valve arrangements; and proper unloading procedures for oil materials.
• The reporting procedure (Appendices A and B) to follow in case of a spill.
• The containment and cleanup procedures to be followed in case of a spill.

New employees will receive Spill training as part of their initial training program. In addition, employees with specifically identified roles receive additional and/or annual training. Annual training may be incorporated into regularly scheduled safety meetings. Records of spill control training are maintained with the Plan.
Part 4. Contingency Plan for Spills

The UMN Department of Environmental Health and Safety provides guidance to the campus for managing and reporting spills and releases. The DEHS Environmental Fact Sheet: “Responding to Spills and Releases” is included as Appendix A for spill response guidance. The DEHS Spill Reporting Form is included as Appendix B to the Plan.

In the event of emergency, a 9-1-1 call is made which is directed to the Stevens County Law Enforcement Center. Depending on the nature of the emergency, a dispatcher makes a request for response to one or more of the following agencies: Morris Fire Department, Morris Police Department, Stevens County Ambulance Service and UMM Campus Police. West Central Environmental Consultants are on call to provide 24-hour spill response. The Morris, MN response local number is (320) 589-2843.

4.1 Containment and Cleanup

UMM is committed to responding effectively to incidents involving oil products. The locations for spill cleanup equipment are shown on Figure 2. Spill cleanup equipment may not always be situated at these locations but access to cleanup materials will be available at all times.

Actions to decrease impact may include any of the following:

- Adequate communication to prevent injury and reduce environmental impacts.
- Control of the source and spread of the discharge.
- Containment of the spill by means of physical barriers, or other.

In most cases, spilled oil product will be contained at the location of the spill. For outdoor locations, containment can be achieved by blocking surface water drainage pathways.

4.2 Reporting Requirements

A spill released to the environment may represent a reportable spill which requires notification to the appropriate regulatory agencies. Environmental Compliance staff determines whether a spill is reportable and to whom the spill must be reported (State Duty Officer, National Response Center, EPA). Environmental Compliance Staff will works with the person discovering the spill to make any appropriate reports. Any required written reports are prepared, submitted and maintained by Environmental Compliance Staff.

The University procedure for reporting and tracking of spill incidents is detailed in the Factsheet included as Appendix A of this Plan. The Spill Reporting Form is included in Appendix B.

4.3 Disposal Requirements

Typical wastes generated from spills can be of the following nature:

- Oil-contaminated water.
- Oil-contaminated soil.
- Oil-contaminated debris.
- Oil-contaminated sorbent material.

Oily waste at this Facility is managed in accordance with the guidance on the DEHS Environmental Fact Sheet: “Management of Tanks and Containers”, found in Appendix C. Specifically, oily waste is containerized in a closed, labeled container, placed in the designated used oil location at the Facility. It is recommended that the amount of oily waste be kept to a minimum, and shipped off-site every 6 months. Oily wastes are either handled
Part 5. Documentation and Recordkeeping

5.1 Regulatory Notifications

Changes to the type, size and location of regulated containers trigger required changes to this Plan, and – depending on the type of container-- may require additional notification to the MPCA.

Changes to the size, type, location, use or equipment of an AST or UST is subject to the notification requirements of Minn. Stat. 116.48, and the revision requirements of this Plan. Tanks that are no longer in service or not actively being used must undergo formal closure and regulatory notification.

Changes to tanks or containers included in this Plan are initiated by the staff in the affected operational area or Project Manager (if included within the context of a UMM project) through the Environmental Compliance Specialist, who is responsible for completing regulatory contacts and notifications. In some cases, advance notification of activity or soil testing is required. Records related to notifications are maintained locally by the UMM EHS Specialist, as well as with other compliance records centrally.

5.2 Recordkeeping

Compliance records pertaining to this Plan are maintained by the campus EHS specialist for a period of at least three (3) years from the date of the inspection or training, except for records pertaining to USTs, which are maintained for 10 years.

The following specific records are maintained:

- Plan review and amendments
- Training records, including operator certification records for those identified by role, (three years past termination of employment)
- UST Tank tightness test results (10 years)
- UST Automatic tank gauge leak test printouts (10 years)
- UST Line tightness test results (10 years)
- UST Line leak detector function results (10 years)
- AST Annual equipment check results (3 years, ASTs)
- UST/AST/SPCC record of monthly inspection results (10 years)
- Maintenance records for ASTs and USTs (life of the system)

Inspections are conducted and documented in accordance with the schedule indicated herein. Completed checklists are completed by campus staff as indicated in Part 1.6 of the Plan, and forwarded to the campus EHS Specialist. Each operational area lead is responsible for taking corrective actions and initiating preventive maintenance within their respective work areas, with overall campus oversight by the EHS specialist.

Documents and records required by this Plan are maintained with the Plan. Electronic records of some Plan components, as determined by the Environmental Compliance Specialist, are also available.
5.3 **Plan Revisions**

This Plan is reviewed and amended periodically to ensure that it accurately reflects oil handling locations and activities at the Facility, including the following times:

- Within 6 months of a change in Facility design, construction, operation, or maintenance that materially affects the Facility’s spill potential.
- Within 5 years of the signature date of this Plan, to ensure that the most effective prevention and control technology is implemented to reduce the likelihood of a spill event.
- Within 6 months of any release more than 42 gallons in size from the Facility.

The following table describes the date and nature of each revision made to this Plan; if major changes to the Plan are made, revisions must be recertified by a Professional Engineer.

Table 3. Log of Plan Revisions

<table>
<thead>
<tr>
<th>Date of Revision</th>
<th>Revision Author Name, Extension</th>
<th>Part(s) of Plan Affected</th>
<th>Description of Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/19/16</td>
<td>J. Rantala, 612.626.7957</td>
<td>Part 1.4, 1.5</td>
<td>Updated campus plan contact information.</td>
</tr>
<tr>
<td>9/12/18</td>
<td>J. Rantala, 612.626.7957</td>
<td>Table 1: Other FM- Transformers section, Transformer Detail Sheets and Inspection Checklist</td>
<td>Updated details of all transformers based on information provided by M. Miller, electrician.</td>
</tr>
<tr>
<td>2/1/19</td>
<td>J. Rantala, 612.626.7957</td>
<td>Table 1, inspection checklist and misc sections</td>
<td>Addition of elevator at Blakely Hall, and removal of DS area in Transportation Garage (verified removal).</td>
</tr>
</tbody>
</table>
FIGURE 1
SITE LOCATION MAP
University of Minnesota Morris
Figure 2.
SPCC Facility Map, Assets and Inlet Locations

University of Minnesota-Morris
600 East 4th Street, Morris, MN 56267

Barrel
Grease Dumpster
Aboveground Storage Tank
Underground Storage Tank
Reservoir - Elevator
Reservoir - Other
Reservoir - Transformer
Not Regulated
University of Minnesota Building
Storm Water Manhole or Catch Basin
Sanitary Sewer Pipe
Stormwater Pipe
Sanitary Sewer Pipe
Elevation Countours

Imagery: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS,

Date: December 2018
Fact Sheet: Responding to Spills and Releases at UMM

This document provides an overview of the state environmental regulations and EHS guidelines for the report of spills and releases to the environment at the University of Minnesota-Morris (UMM).

Small spills and releases at UMM are managed by Facilities Management and DEHS staff, and, if needed, the Steven’s County Sheriff’s Department, and/or City of Morris Fire Department. Note that normal work rules apply during shift work and after-hours work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action required</th>
</tr>
</thead>
</table>
| 1 | Contain the spill if possible to do safely
 - Stop the release, if possible, by turning off any pump (use the "Emergency Stop" button, valve or by adding a bucket or other container under the drip or leak to contain the release.)
 - Locate spill kit and other necessary materials, including the Safety Data Sheet for the spilled material. See the UMM SPCC Plan Figure 2 for location of spill kits.
 - Ensure access to water and sewers is blocked using adsorbent pads or other methods to divert flow. Isolate the area from others by blocking it, roping it off or using cones. |
| 2 | Call for help
 - For all spills, call Dean Olsen at 320-589-6106 in DEHS for guidance and direction as soon as possible.
 - Be prepared to provide the following information:
 o Your name, location and phone number,
 o Location of the incident: building, floor and room number,
 o Time and type of incident,
 o Name and quantity of chemicals involved, to the extent known,
 o The extent of injuries, if any.
 o Type of hazard to health or the environment including (particularly: flammable, oxidizer, highly reactive and air-born toxic or irritant materials), radioactive materials, biohazards).
 o The safest route to approach the spill.
 - Refer to the UMM Emergency Action Plan for additional details and protocols.
 - Contact 9-1-1 if there is an imminent threat to human health or safety. |
| 3 | Clean up the spill
 - DEHS staff will provide instructions and guidance on cleanup actions, and coordinate communications and spill response activities, including managing local responders.
 - If directed to do so, clean up the spill yourself only if:
 o it does not involve injury,
 o you have the proper training and proper protective equipment to do the cleanup, and
 o the spill is contained. |
| 4 | Report spills to operational managers
 - UMM staff will notify Facilities Management, leadership, and any on-site contractor, vendor or visitor on-site, as appropriate.
 - Contact UMMTC DEHS compliance staff at 612.626.7957 to determine if a report to the State Duty Officer is required. Reporting will be done in collaboration between UMM Staff and DEHS compliance staff. |
| 5 | Additional Reporting for releases to the environment
 - A release to the environment is any spill to the air, land or to the water – including to the storm sewer, sanitary sewer or to a surface water body such as a drainage ditch.
 - DEHS ensures/verifies that the State Duty Officer (651.649.5451) is contacted soon after the initial on-site evaluation has been completed, but no later than 24-hours after discovery of the release.
 - EHs determines if the release exceeds the Reportable Quantity (RQ) for the chemical released.
 o A convenient online tool to determine RQ is at http://homer.ornl.gov/rq/
 o Report releases above the RQ to the National Response Center at 800.424.8802. |
APPENDIX B

Spill Reporting Form
Spill or Incident Reporting Form

Instructions: Complete this form for any spill or other incident involving a petroleum product, hazardous materials/waste or refrigerant. The information provided on this form is used when contacting Emergency Responders and making required regulatory reports. Refer to the Fact Sheet: *Responding to Spills and Releases* for more information.

Part A. Caller Information

<table>
<thead>
<tr>
<th>Name of Reporter:</th>
<th>Name of Receiver:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone Number:</th>
<th>Phone Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- University Employee
- Contractor
- City Employee
- State Duty Officer
- Other:

Part B. Spill Information

Material Spilled:
- Petroleum
- Refrigerant
- Wastewater/Liquid Manure
- SARA Chemical
- Non-SARA Chemical
- Other/Emission

Location Spilled:
- Indoors, fully contained
- Indoors, not fully contained
- Outdoors, fully contained
- Outdoors, not fully contained

Discharge to:
- None
- Air
- Sanitary Sewer
- Storm Sewer
- Surface Water

Specific Location of Spill:

<table>
<thead>
<tr>
<th>GIS Coordinates:</th>
</tr>
</thead>
<tbody>
<tr>
<td>X =</td>
</tr>
<tr>
<td>Y =</td>
</tr>
</tbody>
</table>

Duration of Spill:

<table>
<thead>
<tr>
<th>Start Date/Time:</th>
<th>End Date/Time:</th>
<th>Volume of Spill (est):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gallons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pounds</td>
</tr>
</tbody>
</table>

Cause of Spill:

<table>
<thead>
<tr>
<th>Corrective Actions Plan:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Part C. Notifications

<table>
<thead>
<tr>
<th>Name and Badge No/Ext No</th>
<th>Ticket No</th>
<th>Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State Duty Officer:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Response Center:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Env Compliance Staff:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Campus EH&S:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

1. See http://homer.ornl.gov/rq/ for a convenient online tool to determine SARA chemicals and RQs.
2. Indicate the Campus Number, Building Number and Room Number or closest University asset (such as an electrical, sanitary, communications manhole), street intersections and directionals.
3. Indicate date and time of when spill began and ended. If exact start/stop date is not known, use the date University staff became aware of the spill start/stop.
4. Describe the situation, equipment involved, and other information/causative factors about how the spill occurred.
5. Describe corrective actions taken at the time of spill. DEHS staff to additionally describe any additional corrective actions needed, including time schedule for implementation, and additional reporting.
6. Immediate notification to the State Duty Officer is required for releases to the environment of more than 5 gallons of petroleum product, or any volume of other regulated substances. Immediate notification to the National Response Center is additionally required for releases exceeded the Reportable Quantity (RQ) for identified substances. Consult with UHS Environmental Compliance staff for a determination on when regulatory notifications are required.
7. Notify Campus DEHS and central DEHS staff. Notify CMR or Prime Contractor management if spill is at a construction site. Notify operational unit manager, lead principal investigator (PI) or Project Manager.
APPENDIX C

Environmental Fact Sheet: Management of Tanks and Containers
Environmental Fact Sheet
Management of Tanks and Containers

This document provides an overview of environmental regulations and EHS guidelines for the selection of appropriate storage areas, and for the proper storage of materials and wastes in tanks and containers at University projects, sites and buildings. Additional site specific provisions may apply in some cases, including additional requirements for hazardous wastes, and tanks/tank systems.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Choose proper container storage location</td>
</tr>
<tr>
<td></td>
<td>• Indoors or under cover from elements, away from and down-gradient of floor drains, storm sewer drains and exterior building doors.</td>
</tr>
<tr>
<td></td>
<td>• Protected from vehicle traffic, theft and vandalism.</td>
</tr>
<tr>
<td></td>
<td>• Aisles maintained to visually see and allow spill and emergency response.</td>
</tr>
<tr>
<td></td>
<td>• Surface that is compatible and impervious to the material being stored.</td>
</tr>
<tr>
<td></td>
<td>• On pallets or in rack systems to prevent contact with condensation and other moisture.</td>
</tr>
<tr>
<td></td>
<td>• Area should be clean and dry with a moderate temperature to provide the most stable environment</td>
</tr>
<tr>
<td></td>
<td>• Provide secondary containment for all waste, oil products and flammables containers if ≥ 55 gallons in size</td>
</tr>
<tr>
<td>2</td>
<td>Choose proper container</td>
</tr>
<tr>
<td></td>
<td>• Leak-proof and in good condition.</td>
</tr>
<tr>
<td></td>
<td>• Correct size for safe and efficient inventory management.</td>
</tr>
<tr>
<td></td>
<td>• Compatible with material being stored.</td>
</tr>
<tr>
<td>3</td>
<td>Label container</td>
</tr>
<tr>
<td></td>
<td>• Label container as soon as anything is placed in it.</td>
</tr>
<tr>
<td></td>
<td>• Place label on the body of any container – not on the cover.</td>
</tr>
<tr>
<td></td>
<td>• All containers – regardless of the waste/product -- with AT LEAST the following information:</td>
</tr>
<tr>
<td></td>
<td>• Description of the contents (all containers)</td>
</tr>
<tr>
<td></td>
<td>• NFPA diamond (all containers)</td>
</tr>
<tr>
<td></td>
<td>• Capacity of the container (if container is >55 gallons)</td>
</tr>
<tr>
<td></td>
<td>• Tank registration ID from MPCA (if container is ≥ 500 gallons)</td>
</tr>
<tr>
<td></td>
<td>• Oily Wastes (used oil, used oil filters, used oil sorbents and oily rags):</td>
</tr>
<tr>
<td></td>
<td>• Use the words “Used Oil” with the descriptive name, eg. Used Oil Filters, Used Oil Sorbents. (Do not use “Waste Oil”.)</td>
</tr>
<tr>
<td></td>
<td>• Hazardous Wastes (most chemicals not including petroleum or agricultural chemicals):</td>
</tr>
<tr>
<td></td>
<td>• USE a “Hazardous Waste” label with the descriptive name.</td>
</tr>
<tr>
<td></td>
<td>• Accumulation Start Date – indicate the date when you start adding waste to the container</td>
</tr>
<tr>
<td></td>
<td>• Fill Date – indicate the date when container is filled</td>
</tr>
<tr>
<td></td>
<td>• Special/Universal Wastes (batteries, lamps, mercury containing equipment, pesticides) require special markings:</td>
</tr>
<tr>
<td></td>
<td>• Use the words “Used” or “Waste” with the description name, eg. “Used Lamps”, “Waste Batteries”.</td>
</tr>
<tr>
<td>4</td>
<td>Close containers.</td>
</tr>
<tr>
<td></td>
<td>• Containers must remain closed and sealed, except when adding or removing materials/wastes.</td>
</tr>
<tr>
<td></td>
<td>• Closed means bungs and caps are fully screwed in or on.</td>
</tr>
</tbody>
</table>
Open-head drum containers have lids secured by fully-bolted retaining rings or 'snapped' spring-loaded rings, and Bucket snap-lids are fully engaged. If your container has a funnel, it must be screwed into the bung and have a lid that securely latches. Open funnels and lids that shut by gravity alone do not meet these requirements.

5 Store containers properly.
- Do not mix wastes together or keep incompatible materials in the same storage area.
- Keep all material and waste containers in storage area unless in use.
- Maintain spill response materials near storage areas, marking the container “Spill Kit” or similar wording.
- Use dry cleanup methods whenever possible to cleanup spills; contain and label waste from cleanup.
- Inspect container storage areas weekly for spills, container condition, label performance, storage time limits, container protection and aisle space.

6 Respond to container problems and spills immediately:
- Implement Spill Response Procedure immediately if there is a spill (contact EHS staff for specifics). See EHS Spill Response Factsheet for more information. (http://www.dehs.umn.edu/PDFs/UMN_FactSheet_Release%200715.pdf)
- Overpack or repackage any containers that have failed or are in poor condition if it is safe to do so.
- Add/secure labels as indicated above.

7 Manage empty containers properly:
- Empty aerosol cans should be collected, labeled and managed as a hazardous waste.
- Empty drums and other containers may be retained on-site for reuse or recycle:
 - Remove/blackout previous labels/markings
 - Mark “Empty”
 - Store in a manner to prevent safety and nuisance conditions, and to prevent accumulation of precipitation
 - Indoors or under cover is preferable
 - If outdoors, stored covered, stacked on their side or upright no more than 2 drums high.

8 Ship containers of waste on a timely basis:
- Special/Universal wastes: off-site within 1 year of fill date.
- Oily wastes: minimize amount stored onsite; recommend shipment off-site every 6 months.
- Hazardous wastes: move within 30 days of fill date to central accumulation area; check with Chemical Waste Program for time allowed in central accumulation area (time varies).
- Contact the Chemical Waste Program at (612) 626-1604 or hazwaste@tc.umn.edu to make arrangements to ship waste.
APPENDIX D

Environmental Fact Sheet: Evaluation of Liquids in Secondary Containment or Other Sump Areas
This document provides an overview of the state environmental regulations and EHS guidelines for evaluating liquids discovered in a secondary containment and other sump areas at University projects, sites, and buildings.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action required</th>
</tr>
</thead>
</table>
| 1 | Visually determine if the liquid has any floating layers or portions.
 - If yes, determine whether there is free petroleum or other stored product present. If yes, estimate volume of free product and report to EHS staff as a spill.
 - If safe to do so, recover free product using adsorbent products (pads, booms, socks), storing spent absorbent in a closed, labeled container for Chemical Waste Program disposal (see Step 6, below).
 - Collect a sample on the remaining liquid, and analyze as described by the flow chart below.
 - If no, continue to Step 2.
| 2 | Visually determine if the liquid has a sheen, odor, or color.
 - If yes, collect a sample on the liquid, and analyze as described by the flow chart below.
 - Do not discharge liquid.
 - If no, continue to Step 3.
| 3 | Visually determine if there are any floating or settled solids in the liquid.
 - If there are any floating solids, remove solids and dispose in solid waste.
 - If there are any settled solids, avoid disruption/suction of solids when removing liquid portion by keeping suction inlet above the bottom of the basin and/or using a suction sock over the inlet.
 - Do not discharge solids with the liquid portion.
 - Continue to Step 4 after accounting for solids.
| 4 | Discharge “clean” liquids to vegetated area or to a storm sewer drainage area, if vegetation is not available.
 - If “no” to steps 1 and 2, and solids are managed as described in step 3, the liquid is considered “clean”.
 - When pumping liquids, ensure that the pump inlet remains at the top of the liquid or that the inlet is covered with mesh or filter sock to avoid discharge of solids.
 - Outlet should be to a vegetated area, if possible, with energy dissipation. If vegetation is unavailable, discharge only with erosion prevention and energy dissipation measures in place. Consult with EHS staff for site specific ideas for erosion prevention and/or energy dissipation measures.
 - If draining from a containment plug hole, be sure that solids do not leave containment, and that the drain is closed after use.
| 5 | Analyze liquids that are not “clean” to determine proper management.
 - If the containment area has limited freeboard available and/or is in danger of overtopping, move liquid to a covered, closed and labeled container until analysis is completed and evaluated.
 - The following parameters should be analyzed using 40 CFR 136 methods, unless otherwise excepted as shown below, where there is reasonable potential for the pollutant to be present:
 - VOCs
 - Alt method for benzene, toluene, ethylbenzene: Method 602, 624 or 1624, or EPA
6 Evaluate sample results.
- Samples representing liquids where all analytes are non-detectable (ND) are considered to be “clean”. These liquids can be managed as described in step 4, above.
 - Maintain test results, discharge date, location and duration with other EHS records.
- Samples representing liquids where any analyte value is above the detection level is not considered “clean”. **Do not discharge this liquid to vegetation or to storm sewer.**
 - Provide sample results and a volume estimate to EHS staff, and consult about disposal requirements.
 - In cases with limited pollutant level and/or volume, liquids may be able to be discharged to the sanitary sewer. A letter of no action, or a single-use discharge permit from MCES may be required.
 - In cases with elevated pollutant levels, the liquid may be required to be managed by the Chemical Waste Program (see Step 7, below).
 - Maintain test results and other relevant disposal information with other EHS records.

7 Managed collected wastes timely.
- For collected wastes that cannot be discharged: move within 30 days of fill date to central accumulation area; check with Chemical Waste Program for time allowed in central accumulation area (time varies).
 - Contact Chemical Waste Program at (612) 626-1604 or hazwaste@tc.umn.edu to make arrangements to ship waste.
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: GD001 (M)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>Dining Services</td>
<td></td>
</tr>
</tbody>
</table>

Location	04 - 756	Morris	Dining Hall
Location Details		Floor 0, Loading Dock	
Coordinates (lat, long)		45.589458 , -95.898943	
Shell Capacity (gallons)		226	
Dimensions (inches)		66 x 36 x 22	
Contents	Cooking Oil, Used		
Tank Construction	Carbon Steel, Double Walled		
Tank Base Type	Concrete Pad		
Leak Detection Type	Visual Monitoring		

Part B. Piping Details

| Piping Material | None |

| Piping Leak Detection Type | All Aboveground | Tested Required |

| Piping Leak Detection Type | Exposed Piping |

Part C. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity(gallons)</td>
<td></td>
</tr>
<tr>
<td>Containment Valve Type</td>
<td>None</td>
</tr>
<tr>
<td>Substance Transfer Safeguards/Overfill Protection Type:</td>
<td>None</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>Storm inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>To loading dock pavement area and then to storm sewer approximately 100 feet east.</td>
</tr>
</tbody>
</table>

Part D. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Placed on top level of loading dock. |

see next page for Parts E (Images) and F (Site Facility Map)
Part E. Images

Part F. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.

Data Sources: University of Minnesota University Services, Minnesota DNR, Esri.

Date: 2/6/2019

University of Minnesota
Environmental Health and Safety
Room 100 TCEM | 501 23rd Ave SE, Minneapolis MN 55414 | jrantala@umn.edu | P. 612.626.7957
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: UST001 (M)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM: Grounds/Transportation</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-741</td>
<td>Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 0, Outside</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5923, -95.8991</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Gasoline, Unleaded</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Fiberglass</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Interstitial Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Piping Details

| **Piping Material** | Jacketed Steel, Single Walled | |
| **Piping Leak Detection Type** | Visual Monitoring | |

Part C. Containment Area/Provisions

Containment Type	None			
Containment Capacity (gallons)				
Containment Valve Type	None			
Substance Transfer Safeguards/Overfill Protection Type:	Spill Box/Bucket; Overfill Protection Type: AutoSOLvlGgeSens			
Drainage Flow/Inlet Nearby	No inlet-permeable surface			
Drainage Flow, comments, and other considerations	Flow would be into immediate tank area and then to north parking lot area.			

Part D. Security Provisions/Adequacy

| **Damage Prevention and Security Provisions** | Wood bollards and fencing around tank area; tank inlets locked; fueling station controlled by transportation garage. |

see next page for Parts E (Images) and F (Site Facility Map)
see previous page for Parts A-D

Part E. Images

Part F. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: UST002 (M)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM: Grounds/Transportation</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-741</td>
<td>Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 0, Outside</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5923, -95.8991</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Diesel Fuel, Fuel Oil No 2</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Fiberglass</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Interstitial Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Piping Details

| **Piping Material** | Jacketed Steel, Single Walled | |
| **Piping Leak Detection Type** | Visual Monitoring | |

Part C. Containment Area/Provisions

Containment Type	None	
Containment Capacity (gallons)		
Containment Valve Type	None	
Substance Transfer Safeguards/Overfill Protection Type:	Spill Box/Bucket; Overfill Protection Type: AutoSOLvlGgeSens	
Drainage Flow/Inlet Nearby	No inlet-permeable surface	
Drainage Flow, comments, and other considerations	Flow would be into immediate tank area and then to north parking lot area.	

Part D. Security Provisions/Adequacy

| **Damage Prevention and Security Provisions** | Wood bollards and fencing around tank area; tank inlets locked; fueling station controlled by transportation garage. | |

see next page for Parts E (Images) and F (Site Facility Map)
Part E. Images

Part F. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.

Data Sources: University of Minnesota University Services, Minnesota DNR, Esri.

Date: 2/6/2019

SPCC ID:

UST002 (M)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: UST003 (M)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Engineering</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04 - 754</td>
<td>Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 0, Outside</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5885, -95.8974</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>30000</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Diesel Fuel_Fuel Oil No 2</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Double Walled</td>
<td>Shop Built</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Interstitial Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Piping Details

Piping Material	Fiberglass, Single Walled	
-------------------------	---------------------------	
Piping Leak Detection Type	Visual Monitoring	

Part C. Containment Area/Provisions

Containment Type	Steel	
-----------------------	-------	
Containment Capacity (gallons)	30000	
Containment Valve Type	None	
Substance Transfer Safeguards/Overfill Protection Type:	Spill Box/Bucket; Overfill Protection Type: AutoSOLvlGgeSens	Fill port adjacent to/on container
Drainage Flow/Inlet Nearby	No inlet-permeable surface	
Drainage Flow, comments, and other considerations	Flow would be into immediate tank area and then to parking lot area.	

Part D. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Tank inlet is below grade and locked; fueling station controlled by heating plant. |

see next page for Parts E (Images) and F (Site Facility Map)
Part F. Site Facility Map

- Buildings
- Storm Water Manhole or Catch Basin
- Stormwater Pipe
- Sanitary Sewer Manhole
- Sanitary Sewer Pipe
- Elevation (approx.)

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.

Data Sources: University of Minnesota University Services, Minnesota DNR, Esri.

Date: 2/6/2019

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.

Data Sources: University of Minnesota University Services, Minnesota DNR, Esri.

Date: 2/6/2019
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: AST001 (M)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM: Grounds/Transportation</td>
<td></td>
</tr>
<tr>
<td>Location 04-741</td>
<td>Morris</td>
<td>Transportation Garage</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 1</td>
<td>All Aboveground</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.592355, -95.899548</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>32 x 90 x 48</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Oils and Lubricants, Used</td>
<td>Special Use</td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td>Dispenser</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td>Elevated</td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td>Integrity Testing</td>
</tr>
</tbody>
</table>

Part B. Piping Details

| Piping Material | Carbon Steel, Single Walled | All Aboveground |
| Piping Leak Detection Type | Visual Monitoring | Exposed Piping |

Part C. Containment Area/Provisions

Containment Type	Steel	Containment or Interstitial Sensor
Containment Capacity (gallons)		
Containment Valve Type	None	
Substance Transfer Safeguards/Overfill Protection Type:	Other Containment; Overfill Protection Type: Tank Level Gauge	Fill port adjacent to/on container
Drainage Flow/Inlet Nearby	No inlet-impermeable surface	
Drainage Flow, comments, and other considerations	Secondary containment; trench floor drains in area.	

Part D. Security Provisions/Adequacy

see next page for Parts E (Images) and F (Site Facility Map)
Part E. Images

Part F. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be used as a survey. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota, Minnesota DNR, Esri.
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: AST002 (M)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Grounds/Transportation</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-741 Morris</td>
<td>Transportation Garage</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 1</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.592356, -95.899536</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>32 x 90 x 48</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Oils and Lubricants, Unused</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Piping Details

<table>
<thead>
<tr>
<th>Piping Material</th>
<th>Carbon Steel, Single Walled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping Leak Detection Type</td>
<td>Visual Monitoring</td>
</tr>
</tbody>
</table>

Part C. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td></td>
</tr>
<tr>
<td>Containment Valve Type</td>
<td>Cock/Plug</td>
</tr>
<tr>
<td>Substance Transfer Safeguards/Overfill Protection Type:</td>
<td>Other Containment; Overfill Protection</td>
</tr>
<tr>
<td>Drainage Flow/Outlet Nearby</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Secondary containment; trench floor drains located approximately 20 feet south.</td>
</tr>
<tr>
<td>Fill port adjacent to/on container</td>
<td>Fill port adjacent to/on container</td>
</tr>
</tbody>
</table>

Part D. Security Provisions/Adequacy

| **Damage Prevention and Security Provisions** | Post lights in place for security; locked cabinet. |

see next page for Parts E (Images) and F (Site Facility Map)
see previous page for Parts A-D

Part E. Images

Part F. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID:</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST003 (M)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Owner</th>
<th>FM: Grounds/Transportation</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Morris</th>
<th>Transportation Garage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location Details</td>
<td>Floor 1, 1</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.592357, -95.899523</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>32 x 90 x 48</td>
<td></td>
</tr>
</tbody>
</table>

Contents: Oils and Lubricants, Unused

Tank Construction: Carbon Steel, Single Walled

Tank Base Type: Concrete Pad

Leak Detection Type: Visual Monitoring

Tank Base Type

- Shop Built
- Elevated
- Integrity Testing

Part B. Piping Details

<table>
<thead>
<tr>
<th>Piping Material</th>
<th>Carbon Steel, Single Walled</th>
</tr>
</thead>
</table>

Piping Leak Detection Type

- All Aboveground
- Testing Required
- Exposed Piping

Part C. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Steel</th>
</tr>
</thead>
</table>

Containment Capacity (gallons): 75

Containment Valve Type: Cock/Plug

Substance Transfer Safeguards/Overfill Protection Type: Other Containment; Overfill Protection Type: Tank Level Gauge

Drainage Flow/Inlet Nearby: No inlet-impermeable surface

Drainage Flow, comments, and other considerations: Secondary containment; trench floor drains located approximately 20 feet south.

Part D. Security Provisions/Adequacy

Damage Prevention and Security Provisions: Post lights in place for security; locked cabinet.

See next page for Parts E (Images) and F (Site Facility Map)
see previous page for Parts A-D

Part E. Images

Part F. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: AST004 (M)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM: Grounds/Transportation</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-741 Morris</td>
<td>Transportation Garage</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 1</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.592356, -95.899508</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>32 x 90 x 48</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Oils and Lubricants, Unused</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td>X</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Part B. Piping Details

| Piping Material | Carbon Steel, Single Walled | X|All Aboveground |
| Piping Leak Detection Type | Visual Monitoring | X|Testing Required |

Part C. Containment Area/Provisions

Containment Type	Steel		
Containment Capacity (gallons)			
Containment Valve Type	Cock/Plug		
Substance Transfer Safeguards/Overfill Protection Type:	Other Containment; Overfill Protection		
	Type: Tank Level Gauge	X	Fill port adjacent to/on container
Drainage Flow/Inlet Nearby	No inlet-impermeable surface		
Drainage Flow, comments, and other considerations	Secondary containment; trench floor drains located approximately 20 feet south.		

Part D. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Post lights in place for security; locked cabinet. |

see next page for Parts E (Images) and F (Site Facility Map)
Part E. Images

Part F. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: AST005 (M)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM: Grounds/Transportation</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-741 Morris</td>
<td>Transportation Garage</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 1</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.592354, -95.899492</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>32 x 90 x 48</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Oils and Lubricants, Unused</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Piping Details

<table>
<thead>
<tr>
<th>Piping Material</th>
<th>Carbon Steel, Single Walled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping Leak Detection Type</td>
<td>Visual Monitoring</td>
</tr>
</tbody>
</table>

Part C. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>75</td>
</tr>
<tr>
<td>Containment Valve Type</td>
<td>Cock/Plug</td>
</tr>
<tr>
<td>Substance Transfer Safeguards/Overfill Protection Type:</td>
<td>Other Containment; Overfill Protection</td>
</tr>
<tr>
<td>Substance Transfer Overfill Protection Type:</td>
<td>Tank Level Gauge</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Secondary containment; trench floor drains located approximately 20 feet south.</td>
</tr>
</tbody>
</table>

Part D. Security Provisions/Adequacy

| **Damage Prevention and Security Provisions** | Post lights in place for security; locked cabinet. |

see next page for Parts E (Images) and F (Site Facility Map)
Part E. Images

![Image of containment area]

![Image of tank/container]

Part F. Site Facility Map

- AST005 (M)
- UST001 (M)
- UST002 (M)
- HE013 (M)
- HE014 (M)
- AST005 (M)

Legend:
- Buildings
- Storm Water Manhole or Catch Basin
- Stormwater Pipe
- Sanitary Sewer Pipe
- Elevation (approx.)

Note: This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota, Minnesota DNR, Esri.

Date: 2/6/2019

SPCC ID: AST005 (M)
APPENDIX F

SPCC Site Details: Hydraulic Elevator
Part A. Container Identification and Details

SPCC ID: HE001 (M)	UMN Asset ID:	MPCA Facility ID:
Owner	FM : Elevators	
Location	04-758 Morris	Humanities Fine Arts
Location Details	Floor 1, 40B	
Coordinates (lat, long)	45.590988 , -95.901269 Indoors	
Shell Capacity (gallons)	166	
Dimensions (inches)	30 x 32 x 40	
Contents	Hydraulic Fluid	
Tank Construction	Carbon Steel, Single Walled	
Tank Base Type	Concrete Pad	
Leak Detection Type	Visual Monitoring	

Part B. Containment Area/Provisions

Containment Type	Steel
Containment Capacity (gallons)	
Drainage Flow/Inlet Nearby	Sanitary Inlet-impermeable surface
Drainage Flow, comments, and other considerations	Concrete floor; nearest inlet is in men's restroom ~50 feet away.

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Overhead building lights and fenced in a locked room |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota, University Services, Minnesota DNR, Esri. Date: 2/6/2019
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HE002 (M)</th>
<th>UMN Assoc. Asset ID: Contract# MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Elevators</td>
</tr>
<tr>
<td>Location</td>
<td>04-745 Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 2</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.590398 , -95.90154</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>85</td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>36 x 26 x 21</td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>85</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Concrete floor; elevator pit adjacent to reservoir.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Placed inside a locked door with overhead building lights |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.

Data Sources: University of Minnesota University Services, Minnesota DNR, Esri.

Date: 2/6/2019
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HE003 (M)</th>
<th>UMN Assoc. Asset ID: Contract# MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM: Elevators</td>
</tr>
<tr>
<td>Location</td>
<td>04-747 Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 19</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.589986, -95.901576</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>156</td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>47 x 32 x 24</td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

Containment Type	Steel
Containment Capacity (gallons)	
Drainage Flow/Inlet Nearby	No inlet-impermeable surface
Drainage Flow, comments, and other considerations	Concrete floor; elevator pit adjacent to reservoir.

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Placed inside a locked door with overhead building lights |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.

Data Sources: University of Minnesota University Services, Minnesota DNR, Esri.

Date: 2/6/2019

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota University Services, Minnesota DNR. Est. Date: 2/6/2019

0 Feet 70 140 N

Buildings
Storm Water Manhole or Catch Basin
Stormwater Pipe
Sanitary Sewer Manhole
Sanitary Sewer Pipe
Elevation (approx.)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HE004 (M)</th>
<th>UMN Assoc. Asset ID: Contract# B169SC Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Elevators</td>
</tr>
<tr>
<td>Location</td>
<td>04-750</td>
</tr>
<tr>
<td>Location Details</td>
<td>Morris</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5889 , -95.9018</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>234</td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>48 x 27 x 24</td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>Concrete floor; elevator pit adjacent to reservoir.</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td></td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Placed inside a locked door with overhead building lights |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota, University Services, Minnesota DNR, Esri. Date: 2/6/2019
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HE005 (M)</th>
<th>UMN Assoc. Asset ID: Contract# MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Elevators</td>
</tr>
<tr>
<td>Location</td>
<td>04-750</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, Elevator Room</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5891 , -95.9027 Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>136</td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>41 x 32 x 24</td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity(gallons)</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Concrete floor. No floor drains in area; earth drain located 8 feet away.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| **Damage Prevention and Security Provisions** | Placed inside a locked door with overhead building lights |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota, University Services, Minnesota DNR, Esri. Date: 2/6/2019
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HE006 (M)</th>
<th>UMN Assoc. Asset ID: Contract# MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Elevators</td>
</tr>
<tr>
<td>Location</td>
<td>04-721 Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, Elevator Rm</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.899819 , -95.899746 Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>166</td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>48 x 25 x 32</td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>No inlet-impermeable surface</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Placed inside a locked door with overhead building lights |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota, University Services, Minnesota DNR, Esri.

Date: 2/6/2019

Owner

SPCC ID: HE006 (M)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HE007 (M)</th>
<th>UMN Assoc. Asset ID: Contract #</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM: Elevators</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-725</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>04-725</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.590146, -95.8998</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>38 x 40 x 19</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>No floor drains in area; earth drain located 10 feet away.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

<table>
<thead>
<tr>
<th>Damage Prevention and Security Provisions</th>
<th>Placed inside a locked door with overhead building lights</th>
</tr>
</thead>
</table>

Part D. Site Facility Map

- **Buildings**: Storm Water Manhole or Catch Basin, Stormwater Pipe, Sanitary Sewer Manhole, Sanitary Sewer Pipe, Elevation (approx.)

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.

Data Sources: University of Minnesota, University Services, Minnesota DNR, Esri.

Date: 2/6/2019
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HE008 (M)</th>
<th>Owner</th>
<th>FM: Elevators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location 04-756</td>
<td>Location Details</td>
<td>Floor 1, Elevator Rm</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.589315, -95.899079</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>49 x 24 x 32</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>163</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>Sanitary Inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Concrete floor; nearest floor drain is ~15 feet away.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Placed inside a locked door with overhead building lights |

Part D. Site Facility Map

![Site Facility Map Image](image-url)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HE009 (M)</th>
<th>UMN Assoc. Asset ID: Contract# MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Elevators</td>
</tr>
<tr>
<td>Location</td>
<td>04-753 Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 103A</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.587726 , -95.898514</td>
</tr>
<tr>
<td>Indoors</td>
<td>X</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>156</td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>47 x 24 x 32</td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

- **Containment Type**: Steel
- **Containment Capacity (gallons)**: 156
- **Drainage Flow/Inlet Nearby**: No inlet-impermeable surface
- **Drainage Flow, comments, and other considerations**: Concrete floor; elevator pit adjacent to reservoir.

Part C. Security Provisions/Adequacy

- **Damage Prevention and Security Provisions**: Placed inside a locked door with overhead building lights

Part D. Site Facility Map

The map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota University Services, Minnesota DNR, Esri. Date: 2/6/2019
Part A. Container Identification and Details

SPCC ID: HE010 (M)
UMN Assoc. Asset ID: Contract # MPCA Facility ID:

<table>
<thead>
<tr>
<th>Owner</th>
<th>FM : Elevators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>04-758 Morris</td>
</tr>
</tbody>
</table>

| Location Details | Floor 1, Rm 20 (Stage Lift) |
| Coordinates (lat, long) | 45.590745, -95.901355 Indoors |

Shell Capacity (gallons)	136
Dimensions (inches)	50 x 21 x 30
Contents	Hydraulic Fluid
Tank Construction	Carbon Steel, Single Walled
Tank Base Type	Concrete Pad
Leak Detection Type	Visual Monitoring

Part B. Containment Area/Provisions

Containment Type	Steel
Containment Capacity (gallons)	
Drainage Flow/Inlet Nearby	No inlet-impermeable surface
Drainage Flow, comments, and other considerations	Concrete floor; elevator pit adjacent to reservoir.

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Placed inside a locked door with overhead building lights |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota University Services, Minnesota DNR, Esri. Date: 2/6/2019
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HE011 (M)</th>
<th>UMN Assoc. Asset ID: Contract # FACILITY ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM: Engineering</td>
</tr>
<tr>
<td>Location</td>
<td>04-766 Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor Press Box Level, Elevator Rm</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5865, -95.8993</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>80</td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>40 x 38 x 19</td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>80</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Concrete floor; elevator pit adjacent to reservoir.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Placed inside a locked door with overhead building lights |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota University Services, Minnesota DNR, Esri. Date: 2/6/2019
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HE012 (M)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM: Other</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-724</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 122</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.589301 , -95.899854</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>41 x 40 x 30</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type (gallons)</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>There are no floor drains in this room. Piping from the unit goes up and into the wall. The other piping and conduit floor penetrations are sealed, so any leaks are contained within the</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Compactor is located inside in recycle center. |

Part D. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HE015 (M)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Engineering</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-724 Morris</td>
<td>Blakely Hall</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 122</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.589301, -95.899854</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>36 x 40 x 30</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td></td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

Part D. Site Facility Map

[Map showing various facilities and map details]
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HP001 (M)</th>
<th>UMN Asset ID: BHPU - 1</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Engineering</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-754</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor LL, Wood fuel loading area</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.587902 , -95.897505</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>32 x 36 x 18</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>Contained on lower level concrete floor.</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td></td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| **Damage Prevention and Security Provisions** | Placed inside a locked door with overhead building lights |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.

Data Sources: University of Minnesota University Services, Minnesota DNR, Esri.

Date: 2/6/2019

Owner

SPCC Detail Sheet: Oil Containing Equipment (Reservoir - Elevator)

SPCC ID: HP001 (M)

Owner

FM : Engineering

Location 04-754

Morris | Heating Plant

Location Details Floor LL, Wood fuel loading area

Coordinates (lat, long) 45.587902 , -95.897505 Indoors

Shell Capacity (gallons) 90

Dimensions (inches) 32 x 36 x 18

Contents Hydraulic Fluid

Tank Construction Carbon Steel, Single Walled

Tank Base Type Concrete Pad

Leak Detection Type Visual Monitoring

Part B. Containment Area/Provisions

Containment Type Steel

Containment Capacity (gallons) No inlet-impermeable surface

Drainage Flow/Inlet Nearby Contained on lower level concrete floor.

Part C. Security Provisions/Adequacy

Damage Prevention and Security Provisions Placed inside a locked door with overhead building lights

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.

Data Sources: University of Minnesota University Services, Minnesota DNR, Esri.

Date: 2/6/2019

Owner

SPCC Detail Sheet: Oil Containing Equipment (Reservoir - Elevator)

SPCC ID: HP001 (M)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: HP002 (M)</th>
<th>UMN Asset ID: THPU - 1</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Engineering</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-754</td>
<td>Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor LL, Wood fuel loading area</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.587867, -95.897507</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>32 x 36 x 18</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Hydraulic Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Contained on lower level concrete floor.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

<table>
<thead>
<tr>
<th>Damage Prevention and Security Provisions</th>
<th>Placed inside a locked door with overhead building lights</th>
</tr>
</thead>
</table>

Part D. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR001 (M)</th>
<th>UMN Asset ID: SN: 980656-AL</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Electric Utilities</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-754</td>
<td>Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>West side</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5883 , -95.8977</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>75 x 66 x 83</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

Containment Type	None
Containment Capacity (gallons)	
Drainage Flow/Inlet Nearby	Storm inlet-impermeable surface
Drainage Flow, comments, and other considerations	Oil would drain easterly 5 feet to trench storm drain.

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Building lights in place for security; locked cabinet. |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota University Services, Minnesota DNR, Esri.

Date: 2/6/2019

MPCA Facility ID: TR001 (M)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR002 (M)</th>
<th>UMN Asset ID: SN: 87A463827</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Electric Utilities</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-756</td>
<td>Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 5B</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.589128 , -95.89928</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>Height is 60, diameter is 20.</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No floor drains in vicinity, would drain to floor of electrical room; 4 inch concrete curbing surrounding transformers.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| **Damage Prevention and Security Provisions** | Transformer is located in a locked room accessible only to required personnel. Overhead building lights in place. |

Part D. Site Facility Map

[Map of the site showing the location of the container with labels for various buildings and areas.]
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR003 (M)</th>
<th>Owner</th>
<th>FM: Electric Utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>04-756</td>
<td>Morris</td>
</tr>
</tbody>
</table>

Location Details: Floor 1, 5B

Coordinates (lat, long): 45.589129, -95.899264

Indoors: Yes

Shell Capacity (gallons): 77

Dimensions (inches): Height is 60, diameter is 20.

Contents: Dielectric Fluid

Tank Construction: Carbon Steel, Single Walled

Tank Base Type: Concrete Pad

Leak Detection Type: Visual Monitoring

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Concrete</th>
</tr>
</thead>
</table>

Containment Capacity (gallons): No inlet-impermeable surface

Drainage Flow/Inlet Nearby:

Drainage Flow, comments, and other considerations:

No floor drains in vicinity, would drain to floor of electrical room; 4 inch concrete curbing surrounding transformers.

Part C. Security Provisions/Adequacy

Damage Prevention and Security Provisions: Transformer is located in a locked room accessible only to required personnel. Overhead building lights in place.

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.

Data Sources: University of Minnesota University Services, Minnesota DNR, Esri. Date: 2/6/2019

TR003 (M)

Owner

SPCC Detail Sheet: Oil Containing Equipment (Reservoir - Transformer)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR004 (M)</th>
<th>UMN Asset ID: SN: 87A463828</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Electric Utilities</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-756 Morris</td>
<td>Dining Hall</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 5B</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.589127 , -95.899249</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>Height is 60, diameter is 20.</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No floor drains in vicinity, would drain to floor of electrical room; 4 inch concrete curbing surrounding transformers.</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td></td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Transformer is located in a locked room accessible only to required personnel. Overhead building lights in place. |

Part D. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR005 (M)</th>
<th>UMN Asset ID: SN: 07A290593</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Electric Utilities</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-749</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 29B</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5889, -95.8998</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>Height is 60, diameter is 20.</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No floor drains in vicinity; 4 inch concrete curbing surrounding transformers.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Transformer is located in a locked room accessible only to required personnel. Overhead building lights in place. |

Part D. Site Facility Map

[Site Facility Map Diagram]

Note: This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota, University Services, Minnesota DNR. Date: 2/6/2019.
Part A. Container Identification and Details

- **SPCC ID:** TR006 (M)
- **Owner:** FM : Electric Utilities
- **Location:** 04-749 Morris | Clayton A. Gay Hall
- **Location Details:** Floor 1, 29B
- **Coordinates (lat, long):** 45.8899, -95.8998
- **Indoors**
- **Shell Capacity (gallons):** 82
- **Dimensions (inches):** Height is 60, diameter is 20.
- **Contents:** Dielectric Fluid
- **Tank Construction:** Carbon Steel, Single Walled
- **Tank Base Type:** Concrete Pad
- **Leak Detection Type:** Visual Monitoring

Part B. Containment Area/Provisions

- **Containment Type:** Concrete
- **Containment Capacity (gallons):**
- **Drainage Flow/Inlet Nearby:** No inlet-impermeable surface
- **Drainage Flow, comments, and other considerations:** No floor drains in vicinity; 4 inch concrete curbing surrounding transformers.

Part C. Security Provisions/Adequacy

- **Damage Prevention and Security Provisions:** Transformer is located in a locked room accessible only to required personnel. Overhead building lights in place.

Part D. Site Facility Map

[Map showing the location of TR006 (M) and surrounding areas]

Legend:
- Buildings
- Storm Water Manhole or Catch Basin
- Stormwater Pipe
- Sanitary Sewer Manhole
- Sanitary Sewer Pipe
- Elevation (approx.)

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota University Services, Minnesota DNR, Esri.

Date: 2/6/2019
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR007 (M)</th>
<th>UMN Asset ID: SN: 07A290595</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Electric Utilities</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-749</td>
<td>Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 29B</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.8899 , -95.8998</td>
<td>indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>Height is 60, diameter is 20.</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity(gallons)</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>No floor drains in vicinity; 4 inch concrete curbing surrounding transformers.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Transformer is located in a locked room accessible only to required personnel. Overhead building lights in place. |

Part D. Site Facility Map

[Site Facility Map Diagram]
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR008 (M)</th>
<th>UMN Asset ID: SN: 25172163 - MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM: Electric Utilities</td>
</tr>
<tr>
<td>Location</td>
<td>04-715 Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 0, Southwest corner</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5891, -95.9007</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>161</td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>52 x 56 x 60</td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>Storm inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Storm drain near Gay Hall; would flow southeast 75' to storm drain.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

Part D. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR009 (M)</th>
<th>UMN Asset ID: SN: 0437019604</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM: Electric Utilities</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-721 Morris</td>
<td>Behmler Hall</td>
</tr>
<tr>
<td>Location Details</td>
<td>North side to the south of TR010</td>
<td></td>
</tr>
<tr>
<td>Coordinates</td>
<td>45.5899 , -95.8996</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>60 x 72 x 45</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

Containment Type	None	
Containment Capacity	Gallons	
Drainage Flow/Inlet Nearby	No inlet-permeable surface	
Drainage Flow, comments, and other considerations	No inlet or road with inlet nearby; would drain to concrete and gravel area surrounding transformer.	

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Post lights in place for security; contained in locked and fenced area. No roads nearby. |

Part D. Site Facility Map

[Map of the facility showing the location of various buildings and features, including TR009 (M), John Q. Imholtz Hall, Camden Hall, etc.]
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR010 (M)</th>
<th>UMN Asset ID: SN: 0537003060 MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM: Electric Utilities</td>
</tr>
<tr>
<td>Location</td>
<td>04-725 Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 0, North side to the north of TR009</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5901, -95.8996</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>241</td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>60 x 72 x 45</td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-permeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>No inlet or road with inlet nearby.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Post lights in place for security; contained in locked and fenced area. |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota University Services, Minnesota DNR, Esri. Date: 2/6/2019
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR011 (M)</th>
<th>Owner</th>
<th>FM: Electric Utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location 04-757</td>
<td>Location Details</td>
<td>Floor 0, North side</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5903 , -95.8982</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>52 x 56 x 59</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>No inlet-permeable surface</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet or road with inlet nearby; would flow to gravel area near transformer.</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td></td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | No lighting in place; contained in locked and fenced area. |

Part D. Site Facility Map

[Map of the area showing the location of the container and other relevant structures.]

Location Details

- **Location**: 04-757, Floor 0, North side
- **Coordinates**: 45.5903 , -95.8982
- **Indoors**: Yes
- **Shell Capacity**: 161 gallons
- **Dimensions**: 52 x 56 x 59 inches
- **Contents**: Dielectric Fluid
- **Tank Construction**: Carbon Steel, Single Walled
- **Tank Base Type**: Concrete Pad
- **Leak Detection Type**: Visual Monitoring
- **Containment Type**: None
- **Containment Capacity**: No inlet-permeable surface
- **Drainage Flow/Inlet Nearby**: No inlet or road with inlet nearby; would flow to gravel area near transformer.
- **Drainage Flow, comments, and other considerations**: No lighting in place; contained in locked and fenced area.
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR012 (M)</th>
<th>UMN Asset ID: SN: 13JC6699500001</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM: Electric Utilities</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-769</td>
<td>Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 0, Southwest corner</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5909, -95.898</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>56 x 56 x 67</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity(gallons)</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>Storm inlet-permeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Inlet in Central Parking Lot down gradient of grassy area.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Post/streetlights and bollards in place for security; locked cabinet. |

Part D. Site Facility Map

TR012 (M)

Green Prairie Living and Learning Community

Saddle Club Barn

Apartments D, E, F

Apartments G, H, J

SPCC Detail Sheet: Oil Containing Equipment (Reservoir - Transformer)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR013 (M)</th>
<th>UMN Asset ID: SN: 09J288090</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Electric Utilities</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-708</td>
<td>Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 0, Southeast corner</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5907, -95.8988</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>52 x 50 x 42</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

- **Containment Type**: None
- **Containment Capacity (gallons)**: 93
- **Drainage Flow/Inlet Nearby**: Storm inlet-impermeable surface
- **Drainage Flow, comments, and other considerations**: Transformer is in vicinity to parking lot catch basin; would flow southerly 20 feet to storm drain.

Part C. Security Provisions/Adequacy

- **Damage Prevention and Security Provisions**: Post lights in place for security; locked cabinet.

Part D. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR014 (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
</tr>
<tr>
<td>Location</td>
</tr>
<tr>
<td>Location Details</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
</tr>
<tr>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
</tr>
<tr>
<td>Dimensions (inches)</td>
</tr>
<tr>
<td>Contents</td>
</tr>
<tr>
<td>Tank Construction</td>
</tr>
<tr>
<td>Tank Base Type</td>
</tr>
<tr>
<td>Leak Detection Type</td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>103</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-permeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>No catch basins in area; would flow northerly to grassy area.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Building and path lights in place for security; locked cabinet; no roads nearby. |

Part D. Site Facility Map

[Map of the site with TR014 (M) highlighted]
SPCC ID: TR015 (M)

Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR015 (M)</th>
<th>UMN Asset ID: SN: 07A290603</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM : Electric Utilities</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-745</td>
<td>Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 1, 14B</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5905 , -95.9013</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>Height is 60, diameter is 20.</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>No inlet in vicinity; 4 inch concrete curbing surrounding transformers.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Transformer is located in a locked room accessible only to required personnel. Overhead building lights in place. |

Part D. Site Facility Map

[Map showing layout and details of the area, including building names and locations.]

This map is intended to be used for planning and reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota University Services, Minnesota DNR, Esri. Date: 2/6/2019.
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR016 (M)</th>
<th>Owner</th>
<th>FM: Electric Utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location 04-745</td>
<td>Location Details</td>
<td>Floor 1, 14B</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5905, -95.9013</td>
<td>XIndoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Height is 60, diameter is 20.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

Containment Type	Concrete
Containment Capacity (gallons)	
Drainage Flow/Inlet Nearby	No inlet-impermeable surface
Drainage Flow, comments, and other considerations	No inlet in vicinity; 4 inch concrete curbing surrounding transformers.

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Transformer is located in a locked room accessible only to required personnel. Overhead building lights in place. |

Part D. Site Facility Map

[Site Facility Map Image]
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR017 (M)</th>
<th>UMN Asset ID: SN: 07A290601</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM: Electric Utilities</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-745</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Morris</td>
<td>Humanities</td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5905, -95.9013</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>Height is 60, diameter is 20.</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>13</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>No inlet in vicinity; 4 inch concrete curbing surrounding transformers.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Transformer is located in a locked room accessible only to required personnel. Overhead building lights in place. |

Part D. Site Facility Map
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR018 (M)</th>
<th>UMN Asset ID: SN: 09J288091</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>FM: Electric Utilities</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-717</td>
<td>Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 0, Northeast corner</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5913 , -95.9003</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>56 x 56 x 58</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td>No inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet or road with inlet nearby; would flow northerly into grassy area.</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>No inlet or road with inlet nearby; would flow northerly into grassy area.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| **Damage Prevention and Security Provisions** | Post lights in place for security; locked cabinet. |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota, University Services, Minnesota DNR. Esti. Date: 2/6/2019.
SPCC Detail Sheet: Oil Containing Equipment (Reservoir - Transformer)

Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR019 (M)</th>
<th>Owner</th>
<th>FM: Electric Utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>04-767</td>
<td>Morris</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 0, North side</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5929°, -95.899</td>
<td></td>
</tr>
<tr>
<td>Indoors</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>60 x 54 x 44</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

Containment Type	None
Containment Capacity (gallons)	109
Drainage Flow/Inlet Nearby	No inlet-impermeable surface
Drainage Flow, comments, and other considerations	No inlet or road with inlet nearby; would flow northerly into grassy area.

Part C. Security Provisions/Adequacy

Part D. Site Facility Map

[Site Facility Map Image]

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR020 (M)</th>
<th>Owner</th>
<th>Location</th>
<th>Location Details</th>
<th>Coordinates (lat, long)</th>
<th>Shell Capacity (gallons)</th>
<th>Dimensions (inches)</th>
<th>Contents</th>
<th>Tank Construction</th>
<th>Tank Base Type</th>
<th>Leak Detection Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ottertail Power</td>
<td>04-Other</td>
<td>Floor 0, Softball Fields East of Parking Lot; Center of softball fields (Outdoors)</td>
<td>45.5903 , -95.8952</td>
<td>100</td>
<td>28 x 40 x 40</td>
<td>Dielectric Fluid</td>
<td>Carbon Steel, Single Walled</td>
<td>Concrete Pad</td>
<td>Visual Monitoring</td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>Storm inlet-impermeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Transformers are in vicinity to catch basin.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Building lights in place for security; locked cabinet. |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.
Data Sources: University of Minnesota University Services, Minnesota DNR, Esri. Date: 2/6/2019

[Map Diagram]

- Storm Water Manhole or Catch Basin
- Stormwater Pipe
- Elevation (approx.)
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR022 (M)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>Ottertail Power</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-766</td>
<td></td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 0, Events; West side (W of TR023)</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5863, -95.8995</td>
<td>indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>59 x 57 x 19</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity (gallons)</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>Storm inlet-permeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Transformers are in vicinity to catch basin.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Building lights in place for security; locked cabinet. |

Part D. Site Facility Map

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization.

Data Sources: University of Minnesota University Services, Minnesota DNR, Esri.

Date: 2/6/2019

[Map Image]
Part A. Container Identification and Details

<table>
<thead>
<tr>
<th>SPCC ID: TR023 (M)</th>
<th>UMN Asset ID:</th>
<th>MPCA Facility ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>Ottertail Power</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>04-766 Morris</td>
<td>Big Cat Stadium</td>
</tr>
<tr>
<td>Location Details</td>
<td>Floor 0, West side (W of TR023)</td>
<td></td>
</tr>
<tr>
<td>Coordinates (lat, long)</td>
<td>45.5863, -95.8995</td>
<td>Indoors</td>
</tr>
<tr>
<td>Shell Capacity (gallons)</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>Dimensions (inches)</td>
<td>49 x 53 x 23</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>Dielectric Fluid</td>
<td></td>
</tr>
<tr>
<td>Tank Construction</td>
<td>Carbon Steel, Single Walled</td>
<td></td>
</tr>
<tr>
<td>Tank Base Type</td>
<td>Concrete Pad</td>
<td></td>
</tr>
<tr>
<td>Leak Detection Type</td>
<td>Visual Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Part B. Containment Area/Provisions

<table>
<thead>
<tr>
<th>Containment Type</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Capacity(gallons)</td>
<td></td>
</tr>
<tr>
<td>Drainage Flow/Inlet Nearby</td>
<td>No inlet-permeable surface</td>
</tr>
<tr>
<td>Drainage Flow, comments, and other considerations</td>
<td>Transformers are in vicinity to catch basin.</td>
</tr>
</tbody>
</table>

Part C. Security Provisions/Adequacy

| Damage Prevention and Security Provisions | Building lights in place for security; locked cabinet. |

Part D. Site Facility Map

[Map of the area showing various facilities and locations related to the container.]

This map is intended to be used for planning & reference use only and shall not be relied upon where a survey is required. The information in this document may not be disclosed, reproduced, or altered without University of Minnesota authorization. Data Sources: University of Minnesota, University Services, Minnesota DNR, Esri.

Date: 2/6/2019
APPENDIX H

Certification of Substantial Harm Determination Form

Facility Name: University of Minnesota Morris
Facility Address: 600 East 4th Street, Morris, MN 56267

1. Does the facility transfer oil over water to or from vessels and does the facility have total oil storage capacity greater than or equal to 42,000 gallons?
 - Yes
 - No

2. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and does the facility lack secondary containment that is sufficiently large to contain the capacity of the largest above-ground oil storage tank plus sufficient freeboard to allow for precipitation within any above-ground storage tank area?
 - Yes
 - No

3. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance such that a discharge from the facility could cause injury to fish and wildlife and sensitive environments?
 - Yes
 - No

4. Does the facility have a total oil storage capacity greater than or equal or 1 million gallons and is the facility located at a distance such that a discharge from the facility would shut down a public drinking water intake?
 - Yes
 - No

5. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and has the facility experienced a reportable oil spill in an amount greater than or equal to 10,000 gallons within the last 5 years?
 - Yes
 - No

[Signature]
Date: 4-15-2016

Ken Kerns, Assistant Vice President
University Health and Safety

For the purposes of 40 CFR Part 112, public drinking water intakes are analogous to public water systems as described at 40 CFR 143.2(c).
APPENDIX I

Plan Inspection Checklists
Instructions: This form is specific to the operational area noted above. Complete this inspection form monthly for each regulated tank or container in the operational area at the Facility for proper operation, damage, leaks and suitability for continued service. Regulated tanks that has a capacity of more than 55 gallons, including above-ground and under-ground storage tanks used for any chemical; bulk and waste oil containers; and grease dumpsters. Forward completed checklists monthly to campus EHS staff; EHS staff maintains inspection documentation onsite for years (10 years for USTs) from the date of the inspection.

Date and time of inspection: | Name of inspector:

Part A. Tank /Container Visual Check

Review all containers and tanks, piping and associated equipment and indicate whether the following criteria are met. Indicate "Yes", "No" or "N/A" for each item. For any answer indicated as "No", indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

| GD001 Used Food Grease (265) | Other: | Other: |

1. Labels and signage for reservoir is in place, legible and accurate.

2. Exterior of reservoir, including paint and coatings, is in good condition, with no evidence of leaking around the reservoir, concrete pad or ground.

3. Above-ground piping, valves, pumps, sensors and associated equipment are in good condition with no evidence of leaking.

4. Foundations and supports are structurally sound, free from corrosion and other damage, and in good condition.

5. There are no other conditions that should be addressed for continued safe operation or that may affect the site SPCC plan.

6. Information on site map & list is complete and accurate.

Findings/Comments:
Monthly and Annual Tank and Container Inspection Form

UMM-Heating Plant

Environmental Health and Safety
Room 100 TCEM | 501 23rd Ave SE, Minneapolis MN 55414 | jrantala@umn.edu | P. 612.626.7957

Month, Year:

Instructions: This form is specific to the operational area noted above. Complete this inspection form monthly for each regulated tank or container in the operational area at the Facility for proper operation, damage, leaks and suitability for continued service. Regulated tanks that have a capacity of more than 55 gallons, including above-ground and under-ground storage tanks used for any chemical; bulk and waste oil containers; and grease dumpsters. Forward completed checklists monthly to campus EHS staff; EHS staff maintains inspection documentation onsite for 3 years (10 years for USTs) from the date of the inspection.

<table>
<thead>
<tr>
<th>Date and time of inspection:</th>
<th>Name of inspector:</th>
</tr>
</thead>
</table>

Part A. Tank /Container Visual Check

Review all containers and tanks, piping and associated equipment and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as “No”, indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

<table>
<thead>
<tr>
<th>Monthly</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>UST003 Fuel OIl Tank (30,000)</td>
<td>UST003 Fuel OIl Tank (30,000)</td>
</tr>
<tr>
<td>HP001 (BHPU-1) Biomass Ram Hydraulic Oil (90)</td>
<td>HP001 (BHPU-1) Biomass Ram Hydraulic Oil (90)</td>
</tr>
<tr>
<td>HP002 (THPU-1) Biomass Ram Hydraulic Oil (90)</td>
<td>HP002 (THPU-1) Biomass Ram Hydraulic Oil (90)</td>
</tr>
<tr>
<td>Other:</td>
<td>Other:</td>
</tr>
</tbody>
</table>

1. Labels and signage for tank/containment area in place, legible and accurate (USTs must be color-coded).
2. Exterior of tank or container/s, including paint and coatings, is in good condition, with no evidence of leaking around the tank/container, concrete pad or ground.
3. Tank openings are properly sealed and vents are clear of obstructions.
4. Above-ground piping, valves, pumps, tank sensors and associated equipment are in good condition with no evidence of leaking.
5. Below-ground piping, valves, pumps, tank sensors and associated equipment are in good condition with no evidence of leaking.
6. Dispenser and pump area, including hose, swivels, nozzle & breakaway (if present) are in good condition and with no evidence of leaking.
7. Level gauge/sight glass (if present) is readable and in good condition.
8. Foundations and supports are structurally sound, free from corrosion and other damage, and in good condition.
9. Grounding straps, wires and sensors are secure, free from corrosion and other damage and in good condition.
10. Individual containers are closed, labeled and completely in containment area.
11. Individual containers do not have any noticeable container distortions, buckling, denting or bulging evident.
Part B. Containment Areas and Release Detection Equipment

Review containment areas associated with containers and indicate whether the following criteria are met. Indicate "Yes", "No" or "N/A" for each item. For any answer indicated as "No", indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

<table>
<thead>
<tr>
<th>Monthly</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>UST003</td>
<td></td>
</tr>
<tr>
<td>Fuel Oil Tank (30,000)</td>
<td>HP001 (BHPU-1)</td>
</tr>
<tr>
<td>HP001 (BHPU-1)</td>
<td>Biomass Ram</td>
</tr>
<tr>
<td>Other:</td>
<td>Other:</td>
</tr>
</tbody>
</table>

1. Containment area is dry or has a minimal level of standing water.
2. There is no evidence of release or regulated substance in containment area or interstitial space between tanks (check pop-up sensor).
3. Drain valves are secured in closed position and have no debris or fire hazard present. All valves in tank system function properly.
4. Containment structures are in good condition and free from cracks, chipping or other damage, and in good condition.
5. For tank equipped with leak detection, overfill or gauging equipment installed, system is functioning properly.
6. For underground tank, tank sump and spill bucket (fill line) does not have evidence of free product, water and debris.

Part C. Safety Precautions & General Conditions

Review containment areas associated with containers and tanks and indicate whether the following criteria are met. Indicate "Yes", "No" or "N/A" for each item. For any answer indicated as "No", indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

<table>
<thead>
<tr>
<th>Monthly</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>UST003</td>
<td></td>
</tr>
<tr>
<td>Fuel Oil Tank (30,000)</td>
<td>HP001 (BHPU-1)</td>
</tr>
<tr>
<td>HP001 (BHPU-1)</td>
<td>Biomass Ram</td>
</tr>
<tr>
<td>Other:</td>
<td>Other:</td>
</tr>
</tbody>
</table>

1. Safety equipment is in place and operative. Fire extinguishers in place.
2. Tank system secured to prevent vandalism and unauthorized use.
3. Spill response supply at each location is adequate to respond to spill at that location.
4. There are no other conditions that should be addressed for continued safe operation or that may affect the site SPCC plan.
5. Information on site map & list is complete and accurate.

Findings/Comments:
Monthly Tank and Container Inspection Form

UMM-Transportation Garage

Environmental Health and Safety

Room 100 TCEM | 501 23rd Ave SE, Minneapolis MN 55414 | jrantala@umn.edu | P. 612.626.7957

Instructions: This form is specific to the operational area noted above. Complete this inspection form monthly for each regulated tank or container in the operational area at the Facility for proper operation, damage, leaks and suitability for continued service. Regulated tanks that have a capacity of more than 55 gallons, including above-ground and under-ground storage tanks used for any chemical; bulk and waste oil containers; and grease dumpsters. Forward completed checklists monthly to campus EHS staff; EHS staff maintains inspection documentation onsite for 3 years (10 years for USTs) from the date of the inspection.

<table>
<thead>
<tr>
<th>Date and time of inspection:</th>
<th>Name of inspector:</th>
</tr>
</thead>
</table>

Part A. Tank /Container Visual Check

Review all containers and tanks, piping and associated equipment and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as “No”, indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

<table>
<thead>
<tr>
<th>Container</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST001 Used Oil Tank (265)</td>
<td></td>
</tr>
<tr>
<td>AST002 Trans Hydraulic Fluid Tank (75)</td>
<td></td>
</tr>
<tr>
<td>AST003 Engine Oil Tank (75)</td>
<td></td>
</tr>
<tr>
<td>AST004 Engine Oil Tank (75)</td>
<td></td>
</tr>
<tr>
<td>AST005 Engine Oil Tank (75)</td>
<td></td>
</tr>
<tr>
<td>DS001 Misc Oils/Lube (220)</td>
<td></td>
</tr>
<tr>
<td>UST001 (303) Gasoline Tank (2500)</td>
<td></td>
</tr>
<tr>
<td>UST002 (304) Diesel Fuel Tank (2500)</td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
</tr>
</tbody>
</table>

1. Labels and signage for tank/containment area in place, legible and accurate (USTs must be color-coded).

2. Exterior of tank or container/s, including paint and coatings, is in good condition, with no evidence of leaking around the tank/container, concrete pad or ground.

3. Tank openings are properly sealed and vents are clear of obstructions.

4. Above-ground piping, valves, pumps, tank sensors and associated equipment are in good condition with no evidence of leaking.

5. Below-ground piping, valves, pumps, tank sensors and associated equipment are in good condition with no evidence of leaking.

6. Dispenser and pump area, including hose, swivels, nozzle & breakaway (if present) are in good condition and with no evidence of leaking.

7. Level gauge/sight glass (if present) is readable and in good condition.

8. Foundations and supports are structurally sound, free from corrosion and other damage, and in good condition.

9. Grounding straps, wires and sensors are secure, free from corrosion and other damage and in good condition.

10. Individual containers are closed, labeled and completely in containment area.

11. Individual containers do not have any noticeable container distortions, buckling, denting or bulging evident.
Part B. Containment Areas and Release Detection Equipment

Review containment areas associated with containers and tanks and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as “No”, indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

<table>
<thead>
<tr>
<th>Container Code</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST001</td>
<td>Used Oil Tank (265)</td>
<td></td>
</tr>
<tr>
<td>AST002</td>
<td>Trans Hydraulic Fluid Tank (75)</td>
<td></td>
</tr>
<tr>
<td>AST003</td>
<td>Engine Oil Tank (75)</td>
<td></td>
</tr>
<tr>
<td>AST004</td>
<td>Engine Oil Tank (75)</td>
<td></td>
</tr>
<tr>
<td>AST005</td>
<td>Engine Oil Tank (75)</td>
<td></td>
</tr>
<tr>
<td>DS001</td>
<td>Misc Oils/Lube (220)</td>
<td></td>
</tr>
<tr>
<td>UST001 (303)</td>
<td>Gasoline Tank (2500)</td>
<td></td>
</tr>
<tr>
<td>UST002 (304)</td>
<td>Diesel Fuel Tank (2500)</td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Containment area is dry or has a minimal level of standing water.
2. There is no evidence of release or regulated substance in containment area or interstitial space between tanks (check pop-up sensor).
3. Drain valves are secured in closed position and have no debris or fire hazard present. All valves in tank system function properly.
4. Containment structures are in good condition and free from cracks, chipping or other damage, and in good condition.
5. For tank equipped with leak detection, overfill or gauging equipment installed, system is functioning properly.
6. For underground tank, tank sump and spill bucket (fill line) does not have evidence of free product, water and debris.

Part C. Safety Precautions & General Conditions

Review containment areas associated with containers and tanks and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as “No”, indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

<table>
<thead>
<tr>
<th>Container Code</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST001</td>
<td>Used Oil Tank (265)</td>
<td></td>
</tr>
<tr>
<td>AST002</td>
<td>Trans Hydraulic Fluid Tank (75)</td>
<td></td>
</tr>
<tr>
<td>AST003</td>
<td>Engine Oil Tank (75)</td>
<td></td>
</tr>
<tr>
<td>AST004</td>
<td>Engine Oil Tank (75)</td>
<td></td>
</tr>
<tr>
<td>AST005</td>
<td>Engine Oil Tank (75)</td>
<td></td>
</tr>
<tr>
<td>DS001</td>
<td>Misc Oils/Lube (220)</td>
<td></td>
</tr>
<tr>
<td>UST001 (303)</td>
<td>Gasoline Tank (2500)</td>
<td></td>
</tr>
<tr>
<td>UST002 (304)</td>
<td>Diesel Fuel Tank (2500)</td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Safety equipment is in place and operative. Fire extinguishers in place.
2. Tank system secured to prevent vandalism and unauthorized use.
3. Spill response supply at each location is adequate to respond to spill at that location.
4. There are no other conditions that should be addressed for continued safe operation or that may affect the site SPCC plan.
5. Information on site map & list is complete and accurate.

Findings/Comments:
Instructions: This form is specific to the operational area noted above. Complete this inspection form annually for each regulated oil-filled equipment for proper operation, damage, leaks and suitability for continued service. Any oil-filled equipment at this Facility with a reservoir capacity of more than 55 gallons is subject to regulation. Forward completed checklists monthly to campus EHS staff; EHS staff maintains inspection documentation onsite for 3 years from the date of the inspection.

Date and time of inspection:

Name of inspector:

Part A. Container Visual Check

Review all oil-filled equipment, piping and associated equipment and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as “No”, indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

1. Labels and signage for reservoir is in place, legible and accurate.

2. Exterior of reservoir, including paint and coatings, is in good condition, with no evidence of leaking around the reservoir, concrete pad or ground.

3. Above-ground piping, valves, pumps, sensors and associated equipment are in good condition with no evidence of leaking.

4. Foundations and supports are structurally sound, free from corrosion and other damage, and in good condition.

5. Grounding straps, wires and sensors are secure, free from corrosion and other damage and in good condition.
Part B. Containment Areas

Review containment areas associated with oil-filled equipment and indicate whether the following criteria are met. Indicate "Yes", "No" or "N/A" for each item. For any answer indicated as "No", indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

1. Containment area (room or elevator pit) is dry or has a minimal level of standing water.
2. There is no evidence of release or regulated substance in containment area.
3. Containment structures are in good condition and free from cracks, chipping or other damage, and in good condition.

<table>
<thead>
<tr>
<th>Building</th>
<th>Room</th>
<th>Address</th>
<th>Substance</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE001 (M)</td>
<td>758 - Humanities Fine Arts</td>
<td>40B</td>
<td>Hydraulic Fluid</td>
<td>166</td>
</tr>
<tr>
<td>HE002 (M)</td>
<td>745 - Humanities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE003 (M)</td>
<td>747 - Student Center</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE004 (M)</td>
<td>750 - Science</td>
<td>Room</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE005 (M)</td>
<td>750 - Science Elevator Room</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE006 (M)</td>
<td>721 - Behmer Hall Elevator Rm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE007 (M)</td>
<td>725 - John Q Imholte Hall</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE008 (M)</td>
<td>756 - Dining Hall Elevator Rm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE009 (M)</td>
<td>753 - Physical Education Center</td>
<td>103A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE010 (M)</td>
<td>758 - Humanities Fine Arts Rm</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE011 (M)</td>
<td>766 - Big Cat Stadium Elevator Rm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part C. Safety Precautions & General Conditions

Review safety precautions in the area of the oil-filled equipment and indicate whether the following criteria are met. Indicate "Yes", "No" or "N/A" for each item. For any answer indicated as "No", indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

1. Safety equipment is in place and operative. Fire extinguishers in place.
2. There are no other conditions that should be addressed for continued safe operation or that may affect the site SPCC plan.
3. Information on site map & list is complete and accurate.

Findings/Comments:
Instructions: This form is specific to the operational area noted above. Complete this inspection form annually for each regulated oil-filled equipment for proper operation, damage, leaks and suitability for continued service. Any oil-filled equipment at this Facility with a reservoir capacity of more than 55 gallons is subject to regulation. Forward completed checklists annually to campus EHS staff; EHS staff maintains inspection documentation onsite for 3 years from the date of the inspection.

<table>
<thead>
<tr>
<th>Date and time of inspection:</th>
<th>Name of inspector:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part A. Container Visual Check

Review all oil-filled equipment, piping and associated equipment and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as “No”, indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

<table>
<thead>
<tr>
<th>TR001</th>
<th>TR002</th>
<th>TR003</th>
<th>TR004</th>
<th>TR005</th>
<th>TR006</th>
<th>TR007</th>
<th>TR008</th>
<th>TR009</th>
<th>TR010</th>
<th>TR011</th>
<th>TR012</th>
<th>TR013</th>
<th>TR014</th>
</tr>
</thead>
<tbody>
<tr>
<td>W Outdoors, Bldg 754</td>
<td>Room 5B, Bldg 756</td>
<td>Room 29B, Bldg 749</td>
</tr>
<tr>
<td>Dielectric Oil (350 gal)</td>
<td>Dielectric Oil (74 gal)</td>
<td>Dielectric Oil (77 gal)</td>
<td>Dielectric Oil (74 gal)</td>
<td>Dielectric Oil (26 gal)</td>
</tr>
</tbody>
</table>

1. Labels and signage for reservoir is in place, legible and accurate.

2. Exterior of reservoir, including paint and coatings, is in good condition, with no evidence of leaking around the reservoir, concrete pad or ground.

3. Above-ground piping, valves, pumps, sensors and associated equipment are in good condition with no evidence of leaking.

4. Foundations and supports are structurally sound, free from corrosion and other damage, and in good condition.

5. Grounding straps, wires and sensors are secure, free from corrosion and other damage and in good condition.
Part A. Container Visual Check (cont.)

Review all oil-filled equipment, piping and associated equipment and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as “No”, indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

TR015	Room 14B, Bldg 745	Dielectric Oil (13 gal)
TR016	Room 14B, Bldg 745	Dielectric Oil (13 gal)
TR017	Room 14B, Bldg 745	Dielectric Oil (13 gal)
TR018	NE Outdoors, Bldg 717	Dielectric Oil (219 gal)
TR019	N Outdoors, Bldg 769	Dielectric Oil (109 gal)
TR020	Outdoors, Softball Field	N/A – Ottertail Power
TR021	W Side of S Lot on Pole	Ottertail Power
TR022	S Outdoors, Bldg 766	Ottertail Power (208 g)
TR023	SW Outdoors, Bldg 766	Ottertail Power (204 g)
TR024	S Side of S Lot on Pole	Ottertail Power

1. Labels and signage for reservoir is in place, legible and accurate.

2. Exterior of reservoir, including paint and coatings, is in good condition, with no evidence of leaking around the reservoir, concrete pad or ground.

3. Above-ground piping, valves, pumps, sensors and associated equipment are in good condition with no evidence of leaking.

4. Foundations and supports are structurally sound, free from corrosion and other damage, and in good condition.

5. Grounding straps, wires and sensors are secure, free from corrosion and other damage and in good condition.
Part B. Containment Areas

Review containment areas associated with oil-filled equipment and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as "No", indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

TR001	W Outdoors, Bldg 754	Dielectric Oil (350 gal)
TR002	Room 5B, Bldg 756	Dielectric Oil (74 gal)
TR003	Room 5B, Bldg 756	Dielectric Oil (77 gal)
TR004	Room 29B, Bldg 756	Dielectric Oil (74 gal)
TR005	Room 29B, Bldg 749	Dielectric Oil (26 gal)
TR006	Room 29B, Bldg 749	Dielectric Oil (26 gal)
TR007	Room 29B, Bldg 749	Dielectric Oil (26 gal)
TR008	SW Outdoors, Bldg 715	Dielectric Oil (161 gal)
TR009	S Outdoors, Bldg 721	Dielectric Oil (353 gal)
TR010	N Outdoors, Bldg 745	Dielectric Oil (241 gal)
TR011	N Outdoors, Bldg 757	Dielectric Oil (161 gal)
TR012	SW Outdoors, Bldg 708	Dielectric Oil (252 gal)
TR013	SE Outdoors, Bldg 716	Dielectric Oil (63 gal)
TR014	NW Outdoors, Bldg 716	Dielectric Oil (103 gal)

1. Containment area, if present, is dry or has a minimal level of standing water.

2. There is no evidence of release or regulated substance in containment area, if present.

3. Containment structures, if present, are in good condition and free from cracks, chipping or other damage, and in good condition.

Part B. Containment Areas (cont.)

Review containment areas associated with oil-filled equipment and indicate whether the following criteria are met. Indicate “Yes”, “No” or “N/A” for each item. For any answer indicated as "No", indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

TR015	Room 14B, Bldg 745	Dielectric Oil (13 gal)
TR016	Room 14B, Bldg 745	Dielectric Oil (13 gal)
TR017	Room 14B, Bldg 745	Dielectric Oil (13 gal)
TR018	NE Outdoors, Bldg 717	Dielectric Oil (13 gal)
TR019	N Outdoors, Bldg 769	Dielectric Oil (109 gal)
TR020	Outdoors, Softball Field	N/A – Ottertail Power
TR021	W Side of S Lot on Pole	Ottertail Power
TR022	S Outdoors, Bldg 766	Ottertail Power (208 gal)
TR023	SW Outdoors, Bldg 766	Ottertail Power (204 gal)
TR024	S Side of S Lot on Pole	Ottertail Power
TR025	SW Outdoors, Bldg 766	Ottertail Power

1. Containment area, if present, is dry or has a minimal level of standing water.

2. There is no evidence of release or regulated substance in containment area, if present.

3. Containment structures, if present, are in good condition and free from cracks, chipping or other damage, and in good condition.
Part C. Safety Precautions & General Conditions

Review safety precautions in the area of the oil-filled equipment and indicate whether the following criteria are met. Indicate "Yes", "No" or "N/A" for each item. For any answer indicated as "No", indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

<table>
<thead>
<tr>
<th>TR</th>
<th>Location</th>
<th>Dielectric Oil (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR001</td>
<td>W Outdoors, Bldg 754</td>
<td>390 gal</td>
</tr>
<tr>
<td>TR002</td>
<td>Room 5B, Bldg 756</td>
<td>74 gal</td>
</tr>
<tr>
<td>TR003</td>
<td>Room 5B, Bldg 756</td>
<td>74 gal</td>
</tr>
<tr>
<td>TR004</td>
<td>Room 5B, Bldg 756</td>
<td>74 gal</td>
</tr>
<tr>
<td>TR005</td>
<td>Room 29B, Bldg 749</td>
<td>74 gal</td>
</tr>
<tr>
<td>TR006</td>
<td>Room 29B, Bldg 749</td>
<td>74 gal</td>
</tr>
<tr>
<td>TR007</td>
<td>Room 29B, Bldg 749</td>
<td>74 gal</td>
</tr>
<tr>
<td>TR008</td>
<td>SW Outdoors, Bldg 715</td>
<td>350 gal</td>
</tr>
<tr>
<td>TR009</td>
<td>S Outdoors, Bldg 721</td>
<td>353 gal</td>
</tr>
<tr>
<td>TR010</td>
<td>N Outdoors, Bldg 721</td>
<td>241 gal</td>
</tr>
<tr>
<td>TR011</td>
<td>N Outdoors, Bldg 757</td>
<td>161 gal</td>
</tr>
<tr>
<td>TR012</td>
<td>W Side of S Lot on Pole</td>
<td>N/A – Ottertail Power</td>
</tr>
<tr>
<td>TR013</td>
<td>S Outdoors, Bldg 766</td>
<td>208 g</td>
</tr>
<tr>
<td>TR014</td>
<td>SW Outdoors, Bldg 766</td>
<td>204 g</td>
</tr>
<tr>
<td>TR015</td>
<td>S Side of S Lot on Pole</td>
<td>93 g</td>
</tr>
</tbody>
</table>

1. Safety equipment is in place and operative. Fire extinguishers in place.

2. There are no other conditions that should be addressed for continued safe operation or that may affect the site SPCC plan.

3. Information on site map & list is complete and accurate.

Part C. Safety Precautions & General Conditions (cont.)

Review safety precautions in the area of the oil-filled equipment and indicate whether the following criteria are met. Indicate "Yes", "No" or "N/A" for each item. For any answer indicated as "No", indicate specific finding, corrective action(s) required, along with the date, time and person(s) notified of actions required.

<table>
<thead>
<tr>
<th>TR</th>
<th>Location</th>
<th>Dielectric Oil (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR015</td>
<td>Room 14B, Bldg 745</td>
<td>13 gal</td>
</tr>
<tr>
<td>TR016</td>
<td>Room 14B, Bldg 745</td>
<td>13 gal</td>
</tr>
<tr>
<td>TR017</td>
<td>Room 14B, Bldg 745</td>
<td>13 gal</td>
</tr>
<tr>
<td>TR018</td>
<td>NE Outdoors, Bldg 717</td>
<td>19 gal</td>
</tr>
<tr>
<td>TR019</td>
<td>N Outdoors, Bldg 769</td>
<td>199 gal</td>
</tr>
<tr>
<td>TR020</td>
<td>Outdoors, Softball Field</td>
<td>N/A – Ottertail Power</td>
</tr>
<tr>
<td>TR021</td>
<td>NE Outdoors, Bldg 717</td>
<td>199 gal</td>
</tr>
<tr>
<td>TR022</td>
<td>W Side of S Lot on Pole</td>
<td>Ottertail Power</td>
</tr>
<tr>
<td>TR023</td>
<td>SW Outdoors, Bldg 766</td>
<td>208 g</td>
</tr>
<tr>
<td>TR024</td>
<td>S Side of S Lot on Pole</td>
<td>Ottertail Power</td>
</tr>
</tbody>
</table>

1. Safety equipment is in place and operative. Fire extinguishers in place.

2. There are no other conditions that should be addressed for continued safe operation or that may affect the site SPCC plan.

3. Information on site map & list is complete and accurate.

Findings/Comments: