SPILL PREVENTION, CONTROL, AND COUNTERMEASURES PLAN

VEOLIA ENERGY SOLUTIONS, LLC.
UNIVERSITY OF MINNESOTA
SOUTH EAST PLANT
600 MAIN STREET, SE
MINNEAPOLIS, MN. 55414

PREVENT SPILLS
PROMPTLY CONTAIN & CLEANUP SPILLS
REPORT REGULATORY DISCHARGES

IF A SPILL HAS OCCURRED, GO TO APPENDIX D

May 2017 Revision
TABLE OF CONTENTS

Management Approval 5
Professional Engineer Certification 6
Distribution List 7
Introduction 9

SPCC Plan Amendment & Periodic Review—40 CFR § 112.5 9
Minnesota Spill Bill Obligation Chapter 15E 10

SPCC Implementation List—40 CFR § 112.3(a) 10

Basic Definitions 11

1.0 Description of Facility—40 CFR 112.7(A)(3)
 a. General Information
 b. Name and Location of Facility
 c. Name, Address and Telephone Number of Owner
 d. Name, Address and Telephone Number of Operator
 e. SIC & NAICS Numbers
 f. Facility 24-Hour Contacts
 g. Primary Contact, SPCC Coordinator, and Designated Person in Charge
 h. First Alternate Contact and Alternate SPCC Coordinator
 i. Second Alternate Contact and Alternate SPCC Coordinator
 j. Facility Description, Physical Layout, and Facility Diagram—40 CFR 112.7(a)(3)

2.0 Facility Description, Physical Layout, and Facility Diagram—40 CFR 112.7(a)(3)

3.0 Oil Storage Tanks
4.0 Chemical Storage Tanks
5.0 Underground (Bulk) Storage Tanks
6.0 Nearest Navigable Waters
 a. TABLE 1 A = Above Ground Containers Designations
 Certification of the Applicability of the Substantial Harm Criteria
8.0 Deviations From Plan Requirements— 40 CFR 112.7(A)(1) AND (2)
9.0 University of Minnesota South East Plant Spill History
10.0 Discharge Prediction—40 CFR 112.7(B)
 a. TABLE 2 - possible oil discharge scenarios.
11.0 Diversionary Structures and Secondary Containment— 40 CFR 112.7(C)
 a. TABLE 3 Diversionary Structures and Secondary Containment.
12.0 Demonstration of Impracticability for Diversionary Structures or Containment—40 CFR 112.1(D)
13.0 Inspections and Records—40 CFR 112.7(E)
 a. Storage Area Inspections
 b. Inspection Records
14.0 Personnel Training and Discharge Prevention Procedures—40 CFR 112.7(F)
 a. Designated Person Accountable for Discharge Prevention [40 CFR 112.7(f)(2)]
 b. Security [40 CFR 112.7(g)(1-5)]
 c. Truck Unloading Operations [40 CFR 112.7(h)(1-3)]
 d. Brittle Fracture Evaluation
 e. Conformance with Additional State requirements
15.0 Spill Prevention and Countermeasure Procedures
 a. Discharge Response Organization
 b. Notification Requirements
 c. Reporting, Information & Recordkeeping Requirements
16.0 Spill (Discharger) Response Procedures —40 CFR 112.7(A)(3)(IV) AND 112.7(A)(5)
 a. Response Procedures

17.0 Follow Up Actions

18.0 Discharge Prevention Measures
 a. Drainage Controls
 b. Valves Used on Diked Storage Areas
 c. Plant Drainage Systems from Areas without Dikes
 d. Bulk Storage Containers
 e. Dike Area, Inspection and Drainage of Rainwater
 f. Corrosion Protection of Buried & Partially Buried Metallic Storage Tanks
 g. Periodic Integrity Testing of Aboveground Containers
 h. Control of Leakage through Internal Heating Coils
 i. Good Engineering Practice - Alarm Systems
 j. Visible Oil Leak Corrections from Container Seams and Gaskets
 k. Observation of Wastewater Treatment Facilities for Oil-Contaminated Discharges
 l. Appropriate Positioning of Mobile or Portable Oil Storage Containers

19.0 Facility Transfer Operations

20.0 Substantial Harm Criteria Checklist

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Type of Oil Stored</td>
<td>18</td>
</tr>
<tr>
<td>Table 2</td>
<td>Possible Oil Discharge Scenarios</td>
<td>21</td>
</tr>
<tr>
<td>Table 3</td>
<td>Existing Containment and Diversion Structures</td>
<td>22</td>
</tr>
<tr>
<td>Table 4</td>
<td>Minimum Information Required for Reporting Discharges to USEPA</td>
<td>29</td>
</tr>
<tr>
<td>Table 5</td>
<td>Summary of Discharge Control Equipment</td>
<td>31</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Veolia North America South East Plant Heating Operation Facility Surface</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Topographical Drainage picture, and drawings of Oil, "Other Polluting Material" and Significant Material Storage</td>
<td></td>
</tr>
</tbody>
</table>

List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Oil Storage Areas & Tanks Inspection/Testing Log</td>
<td>38</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Emergency Contact List: Regulatory Agencies</td>
<td>39</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Emergency Contact List: VNA Central Region Management & Qualified Pollution Incident Clean-Up Contractors</td>
<td>40</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Spill Response Procedures Flow Chart</td>
<td>41</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Discharge Notification Form</td>
<td>42</td>
</tr>
<tr>
<td>Appendix F1</td>
<td>Evaluation of Liquids in Secondary Containment or Other Sump Areas</td>
<td>44</td>
</tr>
<tr>
<td>Appendix F2</td>
<td>Evaluation of Liquids in Secondary Containment or Other Sump Areas Flow Chart</td>
<td>45</td>
</tr>
</tbody>
</table>
MANAGEMENT APPROVAL

Facility:
Veolia Energy Solutions, LLC.
South East Plant
A Non-Transportation, Non-Production, Onshore Facility at
600 Main Street, SE
Minneapolis, MN. 55414

Owner:
University of Minnesota
Steve DiNobile
A Non-Transportation, Non-Production, Onshore Facility at
319 15th Ave. SE
Suite 300
Minneapolis, MN. 55455

Operator:
Veolia North America
South East Plant
A Non-Transportation, Non-Production, Onshore Facility at
600 Main Street, SE
Minneapolis, MN. 55414

The attached SPCC Plan has been reviewed and approved by a representative of Veolia Energy Solutions, LLC. South East plant management with the authority to commit necessary resources for implementing the Plan. The programs and procedures outlined in this plan shall be implemented and periodically reviewed and updated in accordance with 40 CFR Part 112 (as amended through January 1, 2012) and applicable state and local requirements.

Name: Joshua Svejcar

Signature: ________________________________

Title: District Manager
UMN - Veolia North America

Date: 10/26/2015
PROFESSIONAL ENGINEER CERTIFICATION

In accordance with 40 CFR 112.3(d), I hereby certify that:

- I am a Registered Professional Engineer familiar with the provisions of 40 CFR Part 112 – Oil Pollution Prevention.
- I, or my agent, has visited and examined the facility described herein.
- This SPCC Plan has been prepared in accordance with good engineering practice, including consideration of applicable industry standards, and with the applicable requirements of 40 CFR Part 112, Chapter 115E of Minnesota Statutes (Minnesota Spill Bill of 1991) and the requirements of the MWCC waste Discharge Rules of the Metropolitan Disposal System incorporated herein.
- Procedures for required inspections and testing have been established.
- This SPCC Plan is adequate for the facility.

Facility Name and Address: Veolia Energy Solutions, LLC.
South East Plant
600 Main Street, SE
Minneapolis, MN. 55414

Signature: [Signature]
Name (Printed): [DAN RADFORD]
State of Registration: Minnesota
Registration number: 18906
Date: 10/24/15
DISTRIBUTION LIST

Controlled Copy 1: Veolia Energy Solutions, LLC. South East Plant—District Manager

Controlled Copy 2: Veolia Energy Solutions, LLC. South East Plant—EH&S Specialist (Primary SPCC Coordinator)

Controlled Copy 3: Veolia Energy Solutions, LLC. South East Plant—Control Room Desk

Controlled Copy 4: Veolia North America—Regional Director of EH&S

Controlled Copy 5: University of Minnesota—Environmental Compliance Specialist
SPCC PLAN REVIEW

EPA regulations require review and evaluation of this SPCC Plan at least every five years. Changes in equipment, design, construction, operation, or maintenance that materially affect the facility’s potential to discharge oil into waters of the United States require amending the SPCC Plan. As a result of this review and evaluation, Veolia North America, will amend the SPCC Plan within six months of the review to include more effective prevention and control technology if: (1) such technology will significantly reduce the likelihood of a spill event from the facility, and (2) if such technology has been field proven at the time of review. Technical amendments to the Plan must be reviewed and certified by a licensed professional engineer. Amendments to the Plan will be implemented as soon as practical, but no later than six months after preparing the amendment.

FIVE YEAR PLAN REVIEW LOG

<table>
<thead>
<tr>
<th>Review</th>
<th>Date</th>
<th>Update or Amendment Required? Y/N</th>
<th>Reviewer’s Name (Print)</th>
<th>Reviewer’s Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5/15/17</td>
<td>N</td>
<td>Paul Hostettler</td>
<td>Paul Hostettler</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TECHNICAL AMENDMENT LOG

<table>
<thead>
<tr>
<th>Amendment</th>
<th>Date</th>
<th>Technical Amendment Description</th>
<th>Professional Engineer's Name (Printed)</th>
<th>Professional Engineer’s Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This Spill Prevention, Control and Countermeasure (SPCC) Plan was prepared to identify areas within the Veolia Energy Solutions, LLC. South East Plant (VESSE) where oil or other hazardous material could potentially be spilled or leak and directly or indirectly discharge to lands or navigable waterways of the United States, and to provide guidance to all operating personnel for preventing and mitigating such occurrences.

This SPCC Plan conforms to the current requirements of the U.S. Environmental Protection Agency’s (EPA) Federal Oil Pollution Prevention Regulations (40 Code of Federal Regulations, Part 112 (as amended, effective date January 1, 2012) as well as the Minnesota Statutes Chapter 115E also called the Minnesota Spill Bill of 1991. (Abbreviated Prevention and Response Plans) Under these regulations, SPCC Plans must be developed and implemented for non-transportation related, non-production, on-shore facilities that have either multiple aboveground oil storage containers with a total capacity greater than 1,320 gallons or underground oil storage tanks with total capacity exceeding 42,000 gallons and not subject to all RCRA UST provisions. Chapter 115E requires any site with an AST of storage of more than 10,000 gallons and/or hazardous substances to develop the APRP identified above.

It is important to understand that, while this Plan establishes valuable procedures and equipment requirements for handling spills, THE MOST IMPORTANT CRITERION OF OUR SPCC PLAN IS ADVANCE PLANNING. Prior planning is critical to PREVENTING SPILLS and CONTROLLING SPILLS; therefore all oil-handling personnel should be familiar with this SPCC Plan. Attend your assigned training sessions. If you don't understand any part of the Plan, ask questions.

SPCC Plan Amendment & Periodic Review—40 CFR § 112.5

A SPCC Plan review is required following a spill event and amendments made as identified. A Professional Engineer must certify all technical amendments made to the Plan.

EPA regulations also require that SPCC Plans be reviewed at least once every five years, and that it is amended as necessary to incorporate any appropriate advances in the spill control and prevention technologies being used. In addition, a Professional Engineer must certify all technical amendments made to the Plan resulting from this review.

Minnesota Spill Bill Obligation – Chapter 115E of the Minn. Statutes

To meet the intent of the Minnesota Spill Bill, VNA South East Plant shall;

1. Take all reasonable steps to ensure against discharge of oil or hazardous substances, which may pollute land, air and water, or create a threat to the public health and safety.

2. Be prepared at all times to rapidly and thoroughly recover discharged oil, or hazardous substance, and take action to immediately minimize the impact of any such spill.

3. Be sufficiently prepared to respond to a worst case discharge

4. Demonstrate to the MPCA that it is prepared to respond to a worst case discharge through a combination of the following:
a. Provide adequate initial response equipment and properly trained personnel
b. Maintain a contact list of active, specialized contractors for deployment in the event of a discharge
c. Cooperate and coordinate with any existing response cooperative or community organization to aid in their deployment in the event of a discharge
d. Cooperate and coordinate with any local, state or federal agency or other governing body, and specifically with the University of Minnesota
e. Satisfy SPCC and Minnesota Spill Bill requirements to maintain their written plan in a manner consistent with such other area plans that may be relevant.

5. Review this written plan at least every 3 years for continued effectiveness, updates, and site approval.

SPCC Implementation List—40 CFR § 112.3(a)
This SPCC plan was implemented on or before February 17, 2006 and has been reviewed and revised as necessary each year thereafter.

BASIC DEFINITIONS

Adverse weather: Weather conditions that make it difficult for response equipment and personnel to clean up or remove spilled oil, and this must be considered when identifying response systems and equipment in a response plan for the applicable operating environment.

Accidental Discharge: An act by which oil or other hazardous substance inadvertently reaches waters or lands of the United States.

Alteration: Any work on a container involving cutting, burning, welding, or heating operations that changes the physical dimensions or configuration of the container.

Breakout tank: A container used to relieve surges in an oil pipeline system or to receive and store oil transported by a pipeline for reinjection and continued transportation by pipeline.

Bulk storage container: Any container used to store oil. These containers are used for purposes including, but not limited to, the storage of oil prior to use, while being used, or prior to further distribution in commerce. Oil-filled electrical, operating, or manufacturing equipment is not a bulk storage container.

Discharge: Includes, but is not limited to, any spilling, leaking, pumping, pouring, emitting, emptying or dumping of oil which enters a sewer system, storm drain, or other outfall, which is not specifically allowed under one of the facility’s state or federal permits.

Facility: Any mobile or fixed, onshore or offshore building, structure, installation, equipment, pipe, or pipeline (other than a vessel or a public vessel)
used in oil well drilling operations, oil production, oil refining, oil storage, oil gathering, oil processing, oil transfer, oil distribution, and oil waste treatment, or in which oil is used, as described in Part 112 Appendix A. The boundaries of a facility depend on several site-specific factors, including, but not limited to, the ownership or operation of buildings, structures, and equipment on the same site and the types of activity at the site.

Harmful Discharge: The discharge of oil in an amount capable of causing
- a sheen, film, or discoloration of the surface of water or an adjacent shoreline; or
- a violation of State water quality standards; or
- a sludge or oil emulsion to be deposited on adjacent shorelines or a streambed.

Injury: A measurable adverse change, either long- or short-term, in the chemical or physical quality or the viability of a natural resource resulting either directly or indirectly from exposure to a discharge, or exposure to a product of reactions resulting from a discharge.

MPCA: The Minnesota Pollution Control Agency

Maximum extent practicable: Within the limitations used to determine oil spill planning resources and response times for on-water recovery, shoreline protection, and cleanup for worst case discharges from onshore non-transportation-related facilities in adverse weather.

Medium Oil Spill: A spill involving between 24 and 240 barrels (1,000 to 10,000 gallons) of oil.

Minor Oil Spill: A spill involving less than 24 barrels (1,000 gallons) of oil.

NRC: The National Response Center operated 24 hours per day by the United States Coast Guard for receipt of reportable discharges of oil.

Navigable waters: The “navigable waters” of the United States, as defined in section 502(7) of the FWPCA, and includes:

Non-petroleum oil: Oil of any kind that is not petroleum-based, including but not limited to: Fats, oils, and greases of animal, fish, or marine animal origin; and vegetable oils, including oils from seeds, nuts, fruits, and kernels.

Oil: Oil of any kind or in any form, including, but not limited to: Fats, oils, or greases of animal, fish, or marine mammal origin; vegetable oils, including oils from seeds, nuts, fruits, or kernels; and other oils and greases, including petroleum, fuel oil, sludge, synthetic oils, mineral oils, oil refuse, or oil mixed with wastes other than dredged spoil.

Onshore facility: Any facility of any kind located in, on, or under any land within the United States, other than submerged lands.
Owner or operator: Any person owning or operating an onshore facility or an offshore facility, and in the case of any abandoned offshore facility, the person who owned or operated or maintained the facility immediately prior to such abandonment.

Partially buried tank: A storage container that is partially inserted or constructed in the ground, but not entirely below grade, and not completely covered with earth, sand, gravel, asphalt, or other material. A partially buried tank is considered an aboveground storage container for purposes of this part.

Permanently closed: Any container or facility for which:
1. All liquid and sludge has been removed from each container and connecting line; and
2. All connecting lines and piping have been disconnected from the container and blanked off, all valves (except for ventilation valves) have been closed and locked, and conspicuous signs have been posted on each container stating that it is a permanently closed container and noting the date of closure.

Petroleum oil: Petroleum in any form, including but not limited to crude oil, fuel oil, mineral oil, sludge, oil refuse, and refined products.

Repair: Any work necessary to maintain or restore a container to a condition suitable for safe operation, other than that necessary for ordinary, day-to-day maintenance to maintain the functional integrity of the container and that does not weaken the container.

Reportable Discharges:
1. Part 110—Discharge of Oil regulation: an oil spill which results in the unpermitted discharge of oil from the facility to a navigable water or lands of the United States, either directly or indirectly. The Spill Prevention Coordinator, or his on-site designee, is responsible for determining if an oil spill has resulted in a reportable discharge.
2. Part 112.1(b)—SPCC regulation: a discharge of oil in quantities that may be harmful, as described in part 110 (above), into or upon the navigable waters of the United States or adjoining shorelines, or into or upon the waters of the contiguous zone, OR in connection with activities under the Outer Continental Shelf Lands Act or the Deepwater Port Act of 1974, or that may affect natural resources belonging to, appertaining to, or under the exclusive management authority of the United States (including resources under the Magnuson Fishery Conservation and Management Act).
3. Part 112.4—SPCC reportable discharge (written report)
4. Discharge more than 1,000 U.S. gallons of oil in a single discharge as described in § 112.1(b); OR
5. Discharge more than 42 U.S. gallons of oil in each of two discharges described in § 112.1(b), occurring within any twelve month period.

Sheen: An iridescent appearance on the surface of water produced by a thin film of oil.
Sludge: An aggregate of oil, or oil and other matter (except dredging spoils), which is heavier than water and thus sinks below the surface of water.

SPCC Plan: The document required by 40 CFR § 112.3 which details the equipment, workforce, procedures, and steps to prevent, control and provide adequate countermeasures to a discharge.

Spill: An act, or omission, by which oil or other substances are deposited where, unless controlled, will drain, seep, run, or otherwise enter water or lands of the United States.

Storage capacity of a container: The shell capacity of the container.

UMN: University of Minnesota

Vegetable oil: A non-petroleum oil or fat of vegetable origin, including but not limited to oils and fats derived from plant seeds, nuts, fruits, and kernels.

VESSE: Veolia Energy Solutions South East facility. (600 Main Street, SE)

Wetlands: Those areas that are inundated or saturated by surface or groundwater at a frequency or duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include playa lakes, swamps, marshes, bogs, and similar areas such as sloughs, prairie potholes, wet meadows, prairie river overflows, mudflats, and natural ponds.

Worst case discharge: For an onshore non-transportation-related facility means the largest foreseeable discharge in adverse weather conditions as determined using the worksheets in Appendix D to Part 112.
1.0 DESCRIPTION OF FACILITY—40 CFR 112.7(a)(3)

General Information

Name and Location of Facility
Veolia Energy Solutions, LLC. South East Plant
600 Main Street, SE
Minneapolis, MN. 55414
(612) 599-6927

Name, Address and Telephone Number of Owner
University of Minnesota
Dave Christiansen
319 15th Ave. SE
Suite 300
Minneapolis, MN. 55455
(612) 626-3766

Name, Address and Telephone Number of Operator
Veolia Energy Solutions, LLC.
600 Main St. SE
Minneapolis, MN. 55414
(612) 379-1885

SIC & NAICS Numbers
4961 – Steam and Air Conditioning Supply (SIC)
221330—Steam and Air Conditioning Supply (NAICS)

Facility 24-Hour Contacts
Primary Contact, SPCC Coordinator, Designated Person in Charge
Name: Josh Svejcar
Title: District Manager
Work Telephone: 612-599-6927
Home Phone: 715-808-3430
Cell Phone: 612-599-6927

First Alternate Contact and Alternate SPCC Coordinator,
Name: Paul Hostettler
Title: EHS Specialist
Work Telephone: 612-625-9807
Home Phone: 651-357-2087
Cell Phone: 612-816-4004

Second Alternate Contact and Alternate SPCC Coordinator
Name: Michael Stoppa
Title: Regional Director of EH&S
Work Telephone: 816-889-4976
Home Phone: 816-229-1426
Cell Phone: 816-799-4807
2.0 Facility Description, Physical Layout, and Facility Diagram—40 CFR 112.7(a)(3)

General Facility Description

a. The VESSE facility is a natural gas, fuel oil and coal fired steam distribution facility for the University of Minnesota, Minneapolis campus. The facility consists of five (5) boilers, along with a turbine generator and other auxiliary equipment. Boilers No.EU001 (SG201) and EU003 (SG203) are rated at 200K lb/hr. each, EU002 (SG202) is rated at 250K lb/hr., & EU005 (blr #4) is rated at 140K lb/hr., but only permitted to 70K lb/hr. of steam generation while Boiler No.EU004 has been permanently retired in place. The steam generated at the facility is exported to heat campus buildings throughout the University of Minnesota, Minneapolis campus, where it is utilized for the heating and operational needs of the campus facilities, as well as a limited number of off campus facilities/businesses. (See Fig. 1)

b. Facility Operations: The South East plant is, for SPCC regulatory purposes, classified as a non-transportation-related, non-production, onshore facility. The facility is located in Hennepin County, Minnesota at 600 main Street, SE. The plant uses low sulfur #2 fuel oil, stationary engine oil, gear oil and hydraulic oil in the process of manufacturing steam for use at university buildings as well as some off campus facilities. This activity falls under Standard Industrial Classification 4961 and/or NAICS 221330. The main plant building is located at the junction of 6th Avenue Southeast and East River Flats Road, approximately 750 yards west of the old Main plant.

c. This facility also uses and stores bulk hazardous materials such as Hydrogen Sulfide, Sulfuric Acid and other water treatment chemicals.

3.0 Oil Storage Tanks

a. The facility has a boiler fuel day tank, which was installed new in early 2004 and has a capacity of approximately 20,000 gallons. This tank is double walled and situated above ground, outside the retaining wall that houses the coal pile, next to East River Flats road. As well as being double walled, the tank has its own containment area constructed of a concrete base and concrete sides.

i. The day tank is filled via pumps located at the Coal Unloading Building which transfer oil from the large tanks located adjacent to the Coal Unloading building through an underground tunnel system.

ii. Collected rainwater is removed as necessary by removing the containment’s protective drain cap.

b. Plant drawings of the tank’s underground piping do not indicate cathodic protection; the degree of corrosion protection is unknown at this time. The tank and all above ground piping is inspected on a monthly basis.

c. The facility’s system oil pumps, which deliver oil from the 20,000-gallon day tank to boiler burners, are situated inside a containment area sufficient to control a worst-case discharge.
d. The South East plant’s turbine Generator utilizes a large oil sump of 1300 gallon capacity. The sump is located on the plant’s north basement adjacent to the Turbine drive and is situated in its own concrete containment that is adequate to contain a worst case discharge.

e. A second above ground tank that has the capacity of up to 300 gallons of diesel fuel, is located next to the plant’s east wall adjacent to the boiler fuel oil day tank. This tank has its own concrete containment area, and is of adequate size to contain a worst case discharge. There is no pumping station servicing this tank.

f. The facilities emergency fire pump system, located at the west end of the plant’s North basement, uses a 250 gallon #2 Fuel Oil tank situated in its own poured concrete containment. The tank is filled from 55 gallon drums with a portable pump.

g. A facility lubrication storage area is located at the north boiler room basement. This area includes turbine oil, gear lubricants, and various other greases and lubricants dispensed from 55-gallon drums within a concrete containment area.

h. Tanks are maintained behind security fencing and under 24-hour video surveillance by plant personnel.

4.0 Chemical Storage Tanks

The facility maintains a number of smaller chemical charging tanks. All chemical storage tanks are located indoors and have their own containment areas capable of containing worst case discharges.

a. Set in the east end of the plant’s South boiler room basement is an isolated room that holds a 1000-gallon fiberglass tank containing 93% sulfuric acid used as part of the boiler’s water treatment program. The acid carries an NFPA 704M rating of 3 (health) 0 (Flammability) and 1 (Reactivity). This tank is situated within a concrete containment that is large enough to control and capture a worst case discharge, plus a 20 minute discharge of the overhead sprinkler system.

b. In an adjacent room that is similarly isolated, sits a 1000-gallon tank containing 50% sodium hydroxide (Caustic Soda). This substance carries an NFPA 704M rating of 3 (health) 0 (Flammability) and 1 (Reactivity). This tank is situated within a concrete containment that is large enough to control and capture a worst case discharge, plus a 20 minute discharge of the overhead sprinkler system.

c. On the upper levels of the plant’s South boiler room, beneath the Deaerator tank #1 (equipment #DH-D124) are three small Nalco Porta-Feed tanks. Each of these tanks has its own integrated metal containment, sufficient to control and contain a worst case discharge.

 i. The first tank contains 30-gallons of Nalco 7330. This substance has an NFPA 704M rating of 2 (health) 1 (Flammability) and 0 (Reactivity).

 ii. The second tank contains approximately 75-gallons of Nalco 3DT265. This substance has an NFPA 704M rating of 2 (health) 1 (Flammability) and 0 (Reactivity).
iii. The third tank contains approximately 105-gallons of Starbex ST70. This substance has an NFPA 704M rating of 3 (health) 0 (Flammability) and 0 (Reactivity).

d. At the far west end of the South boiler room basement, near the CFB Bag-house, stand three additional tanks used in the boiler system water treatment. These are three identical service tanks containing approximately 100-gallons each of a mixture of Sodium Hydroxide and Nalco Nexguard #22300. This substance has an NFPA 704M rating of 0 (health) 1 (Flammability) and 0 (Reactivity). All three tanks share a common containment adequate to control and contain a worst case discharge.

e. Adjacent to the three tanks listed above in 4.0.d, is a 400-gallon Nalco Porta-feed unit containing Nalco Nexguard #22300, which provides the product to the charging tanks listed in item 4.0.d above. (NFPA 704M rating listed above.) This tank has its own integrated metal containment, sufficient to control and contain a worst case discharge.

f. Also adjacent to the three “charging” tanks identified in 4.0.d above, is a 200 gallon Nalco Porta-feed unit containing Nalco 1700. This substance has an NFPA 704M rating of 1 (health) 0 (Flammability) and 0 (Reactivity). This tank has its own integrated metal containment, sufficient to control and contain a worst case discharge.

g. A third 100-gallon capacity, Nalco Porta-feed tank is located in this area and contains Nalco 352 Morpholene, an amine. This substance has an NFPA 704M rating of 2 (health) 1 (Flammability) and 0 (Reactivity). This tank has its own integrated metal containment, sufficient to control and contain a worst case discharge.

h. Directly adjacent to the tank identified in 4.0.g above is a 100-gallon tank containing Nalco 77350 Cyclohexylamine. This substance has an NFPA 704M rating of 3 (health) 2 (Flammability) and 0 (Reactivity). This tank has its own integrated metal containment, sufficient to control and contain a worst case discharge.

i. In the North boiler room adjacent to the generating turbine is a 400 gallon Nalco Porta-feed tank containing Nalco 7293 Morpholene, an amine. This substance has an NFPA 704M rating of 2 (health) 1 (Flammability) and 0 (Reactivity). This tank has its own integrated metal containment, sufficient to control and contain a worst case discharge.

5.0 Underground (Bulk) Storage Tanks

a. The Veolia Energy Solutions South East plant does not utilize underground storage tanks.

6.0 Nearest Navigable Waters

a. The facility sits on a parcel of land that is bordered to the south by the Mississippi river and the north by the city of Minneapolis and the University of Minnesota. (See Fig. 1 – Google Earth view of Facility)
b. The facility storm drains discharge to a municipal storm sewer system. If an uncontrolled oil spill occurs during periods of high precipitation, it is possible for the oil to reach these storm drains and ultimately travel to the Mississippi River.

c. In the unlikely event of a catastrophic failure of both the 20,000 gallon oil storage day- tank, and its surrounding retention basin, oil could theoretically discharge to the grounds of the facility, run south to south-east along the land parcel as well as run south-east along the service road to the east of the plant, and ultimately reach the Mississippi river, if not effectively contained and controlled on site.

NOTE: A facility diagram is included as Figure 1 at the end of this document indicating the location and contents of each container. Containers that hold less than 55 gallons of oil product are not shown on the diagram. The table below (Table 1) is a summary of the types of oils used at the facility and related storage information. See Table 3 for Diversionary Structures and Secondary Containment.

<table>
<thead>
<tr>
<th>Type of Oil & Chemicals Stored</th>
<th>Type of Storage Container</th>
<th>Storage Capacity (gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Oil Day Tank #2 oil</td>
<td>Steel Tank (A)</td>
<td>20,000</td>
</tr>
<tr>
<td>Secondary day tank #2 oil</td>
<td>Steel Tank (A)</td>
<td>300</td>
</tr>
<tr>
<td>Turbine Generator Tank</td>
<td>Steel Sump (A)</td>
<td>1300</td>
</tr>
<tr>
<td>Transformer Oil</td>
<td>Steel Tank (A)</td>
<td>600</td>
</tr>
<tr>
<td>Transformer Oil</td>
<td>Steel Tank (A)</td>
<td>211</td>
</tr>
<tr>
<td>Emergency Fire Pump Tank</td>
<td>Steel Tank (A)</td>
<td>250</td>
</tr>
<tr>
<td>Turbine Oil</td>
<td>Steel Drum (A)</td>
<td>(10) -55</td>
</tr>
<tr>
<td>Multi-Purpose Gear Lubricant</td>
<td>Steel Drum (A)</td>
<td>(10) -55</td>
</tr>
<tr>
<td>Total Oil Storage Capacity</td>
<td></td>
<td>23,771 Gallons</td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>Fiberglass (A)</td>
<td>1000</td>
</tr>
<tr>
<td>50% Sodium Hydroxide</td>
<td>Fiberglass (A)</td>
<td>1000</td>
</tr>
<tr>
<td>Water Chemistry (NALCO 3 total)</td>
<td>Steel Tanks (A)</td>
<td>210</td>
</tr>
<tr>
<td>3 Charging Tanks (Mixture Sodium Hydroxide / Nexguard)</td>
<td>Steel Tanks (A)</td>
<td>300</td>
</tr>
<tr>
<td>Nexguard Tank</td>
<td>Steel Tank (A)</td>
<td>400</td>
</tr>
<tr>
<td>NALCO 1700</td>
<td>Steel Tank (A)</td>
<td>200</td>
</tr>
<tr>
<td>NALCO 352</td>
<td>Steel Tank (A)</td>
<td>100</td>
</tr>
<tr>
<td>Total Chemical Storage Capacity</td>
<td></td>
<td>3,210 Gallons</td>
</tr>
</tbody>
</table>

A = Above ground containers designation
7.0 Facility Response Plan
 a. The VESSE facility is not subject to 40 CFR § Subpart D—Response
 requirements and the requirement to develop a facility response plan as defined
 HARM CRITERIA”, as required by 40 CFR § 112.20(e), has been completed (see
 following page)
CERTIFICATION OF THE APPLICABILITY OF THE SUBSTANTIAL HARM CRITERIA

Facility Name: Veolia Energy Solutions, LLC South East Plant
Facility Address: 600 Main Street, SE. Minneapolis, MN. 55414

1.0 Does the facility transfer oil over water to or from vessels and does the facility have a total oil storage capacity greater than or equal to 42,000 gallons?

 Yes ___ No ___ X

2.0 Does the facility have a total oil storage capacity greater than or equal to one (1) million gallons and does the facility lack secondary containment that is sufficiently large to contain the capacity of the largest aboveground oil storage tank plus sufficient freeboard to allow for precipitation within any aboveground oil storage tank area?

 Yes ___ No ___ X

3.0 Does the facility have a total oil storage capacity greater than or equal to one (1) million gallons and is the facility located at a distance (as calculated using the appropriate formula in Attachment C-III to App. C 40 CFR 112 or a comparable formula) such that a discharge from the facility could cause injury to fish and wildlife and sensitive environments?

 Yes ___ No ___ X

4.0 Does the facility have a total oil storage capacity greater than or equal to one (1) million gallons and is the facility located at a distance (as calculated using the appropriate formula in Attachment C-III to Appendix C of 40 CFR 112) such that a discharge from the facility would shut down a public drinking water intake?

 Yes ___ No ___ X

5.0 Does the facility have a total oil storage capacity greater than or equal to one (1) million gallons and has the facility experienced a reportable oil spill in an amount greater than or equal to 10,000 gallons within the last five (5) years?

 Yes ___ No ___ X

CERTIFICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Signature: __
Name (Type or Print): Josh Svejcar
Title: District Manager
Date: ____________________________
8.0 Deviations from Plan Requirements [40 CFR 112.7(a)(1) and (2)]
 a. The facility is in conformance with all of the general requirements of 112.7, and the specific requirements of 112.8. Alternate means of environmental protection have not been provided, since the facility conforms to the requirements specified in the regulation.

9.0 University of Minnesota South East Plant Spill History
 a. The facility was operated by the University of Minnesota (UMN) until July 1, 1992, and then operated by Foster Wheeler Twin Cities until May 17, 2014 where the operation was acquired by VES. There were no spills identified during the UMN operating days and one (1) spill identified in October 1996 by Foster Wheeler Twin Cities. This spill was the result of misdirection of a contractor employee who opened the wrong valve after completing his work. This caused the filling of a line that is not normally used and which had to be inspected. Swift response by Bay West ensured that the spill was contained and kept to a minimum, and that no fuel oil reached the Mississippi river of any other critical venue.

10.0 Discharge Prediction [40 CFR 112.7(b)]
 a. Although the facility has not had a reportable discharge or leak in the past five years, there is a reasonable potential for reportable discharges from the oil and oil product containers. Table 2 presents possible oil and chemical discharge scenarios; potential discharge volumes of oil, potential rate of oil flow and potential discharge pathways. See Table 3 for Diversionary Structures and Secondary Containment.

 b. All chemical containers are stored inside surrounded by their own retention basins, capable of containing a worst case scenario discharge. As such, these are not included in Table 2.

 c. There are essentially five different scenarios that may lead to potentially worst case discharges. Because these discharges are nearly always preventable, these situations are identified here along with preventative measure to guard against such events.

Table 2
Possible Oil and Chemical Discharge Scenarios

<table>
<thead>
<tr>
<th>Source</th>
<th>Type of Failure</th>
<th>Volume (gallons)</th>
<th>Rate (gal/min)</th>
<th>Direction of Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Oil No.2</td>
<td>Container leak while in storage</td>
<td>20,000 gallons</td>
<td>1-60 gal/min</td>
<td>Oil would be contained in dike area</td>
</tr>
<tr>
<td>Turbine Oil</td>
<td>Container leak while in storage</td>
<td>55 gallons</td>
<td>< 1 gal/min</td>
<td>Oil would be contained in dike area</td>
</tr>
<tr>
<td>Multi-Purpose Gear Lubricant</td>
<td>Container leak while in storage</td>
<td>55 gallons</td>
<td>< 1 gal/min</td>
<td>Oil would be contained in dike area</td>
</tr>
<tr>
<td>Multi-Purpose Gear Lubricant</td>
<td>Container rupture, tip over, while in transport or storage</td>
<td>55 gallons</td>
<td>1-55 gal/min</td>
<td>Oil would be contained in dike area</td>
</tr>
<tr>
<td></td>
<td>Event Type</td>
<td>Quantity</td>
<td>Flow Rate</td>
<td>Cleanup Measures</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Fuel Oil NO.2</td>
<td>Container leak during unloading process or</td>
<td>50 gallons</td>
<td>1-50 gal/min</td>
<td>Oil would be contained in dike area if leak occurred inside containment walls. If leak occurs at the outside delivery point the facility would utilize facility spill control equipment to contain the released material.</td>
</tr>
<tr>
<td>Fuel Oil No.2 (Diesel</td>
<td>Container leak during loading process or tank</td>
<td>250 gallons</td>
<td>1-250 gal/min</td>
<td>Oil would be contained in dike area if leak occurred inside containment walls.</td>
</tr>
<tr>
<td>fire pump)</td>
<td>overfilling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Oil No.2 (Cat Shack)</td>
<td>Container leak while in storage</td>
<td>300 gallons</td>
<td>1-300 gal/min</td>
<td>Oil would be contained in dike area</td>
</tr>
<tr>
<td>Transformer Oil</td>
<td>Container leak while in storage</td>
<td>600 gallons (est)</td>
<td>1-600 gal/min</td>
<td>Oil would be contained in dike area</td>
</tr>
<tr>
<td>Transformers in Basement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer Oil</td>
<td>Container leak while in storage</td>
<td>211 gallons</td>
<td>1-200 gal/min</td>
<td>Oil would be contained in dike area</td>
</tr>
<tr>
<td>Transformers in B Vault</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbine Oil</td>
<td>Container leak while drum is unloaded</td>
<td>5 gallons</td>
<td>< 1 gal/min</td>
<td>Oil would be contained by the concrete floor or building structure</td>
</tr>
<tr>
<td>Multi-Purpose Gear</td>
<td>Container leak while bucket is unloaded</td>
<td>5 gallons</td>
<td>1-5 gal/min</td>
<td>Oil would be contained by concrete floor area or building structure</td>
</tr>
<tr>
<td>Gear Lubricant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Oil transfer line</td>
<td>Line split or rupture</td>
<td>500</td>
<td>> 1 gal/min</td>
<td>Oil would be contained within the underground tunnel which is made of concrete.</td>
</tr>
<tr>
<td>from Bulk storage to Day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water treatment</td>
<td>Tank split or rupture</td>
<td>1000</td>
<td>> 1 gal/min</td>
<td>Spill would be contained to secondary containment. All containers are stored indoors and pose no risk to external release.</td>
</tr>
<tr>
<td>Chemicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11.0 DIVERSIONARY STRUCTURES AND SECONDARY CONTAINMENT [40 CFR 112.7(c)]

a. Appropriate secondary containment and/or diversionary structures or equipment is provided for all oil and chemical handling containers, equipment and transfer areas to prevent a discharge to navigable waters or adjoining shorelines. The entire secondary containment systems, including walls and floors are capable of containing the materials stored within the tanks occupying those retention cells,
and are so constructed that any discharge from a primary containment system, such as a tank or pipe, will not escape the containment structure before cleanup can occur. The Day Tank secondary containment area is instrumented with level detection equipment and pump out piping to accommodate for volume discrepancy.

Note: Existing containment and diversion structures for each container on site at VESSE are listed in Table 3 below

<table>
<thead>
<tr>
<th>Location</th>
<th>Containment Volume gal</th>
<th>Tank Volume gal</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE Plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformers in Basement</td>
<td>3,427</td>
<td>600 (est)</td>
</tr>
<tr>
<td>Transformers in B Vault</td>
<td>3,615</td>
<td>211</td>
</tr>
<tr>
<td>Day Tank*</td>
<td>10,686</td>
<td>20,000</td>
</tr>
<tr>
<td>Dozer Fuel Tank</td>
<td>690</td>
<td>300</td>
</tr>
<tr>
<td>SE Oil Pump Area</td>
<td>588</td>
<td>N/A</td>
</tr>
<tr>
<td>Diesel Fire Pump Tank</td>
<td>396</td>
<td>250</td>
</tr>
<tr>
<td>Lube Oil Dispensary</td>
<td>675</td>
<td>55</td>
</tr>
<tr>
<td>Used Oil Bsmt SE Corner</td>
<td>386</td>
<td>55</td>
</tr>
<tr>
<td>Haz Storage Near Cond Pumps</td>
<td>284</td>
<td>55</td>
</tr>
<tr>
<td>Generator Lube Oil Console</td>
<td>10,122</td>
<td><<4000</td>
</tr>
<tr>
<td>Acid Tank</td>
<td>1,794</td>
<td>940</td>
</tr>
<tr>
<td>Caustic Tank</td>
<td>1,524</td>
<td>940</td>
</tr>
</tbody>
</table>

DAY TANK IS A DOUBLE WALLED TANK, SEPARATE CONTAINMENT AREA NOT REQUIRED AS PER MPCA
12.0 Demonstration of Impracticability for Diversionary Structures or Containment [40 CFR 112.1]
 a. The VESSE facility employs the use of appropriate secondary containment and equipment for discharge

13.0 Inspections and Records [40 CFR 112.7(e)]
 a. Daily Inspections: The fuel oil tank and drum storage areas are visually inspected for signs of leaks or discharges, damage, or improper operation and are logged on a daily basis in operators logs. In order to further confirm fuel oil tank integrity, fuel inventory activities are performed on a daily basis.

 b. Bi-Weekly Inspections: In addition to daily visual inspections, the fuel oil tank and drum storage areas are formally inspected and logged on a bi-weekly basis. The concrete walls and floor of the containment area shall be visually checked monthly for cracks and integrity. Repairs shall be made as necessary.

c. Inspection Records
 i. Findings are documented in the Operator’s Daily Log Book and/or by using the Bi-Weekly Inspection Work Order Form with the Inspection/Testing Log included in Appendix A, and are discussed and resolved with management personnel.

 ii. The Operator’s Daily Log Book and the Bi-Weekly Inspection Work Order Forms/Logs are maintained in the Control Room at the VESSE facility.

 iii. Additional confirmation of structural integrity testing of the fuel oil tank is described in Section 17.0 of this document. Records of integrity testing are also maintained in the Control Room at the VESSE facility.

14.0 Personnel Training and Discharge Prevention Procedures [40 CFR 112.7(f)]
 i. Affected personnel that handle oil are trained for successful implementation of this Plan.

 ii. Personnel are instructed in the operation and maintenance of equipment to minimize the discharge of oils. Personnel are also trained on proper procedures for containment and cleanup of small discharges and leaks, as well as discharge response procedures, the contents of this Plan, and other applicable pollution control laws, rules, and regulations. Personnel are trained annually. Training documents such as the EHS Training Tracking Log is kept by site EH&S personnel and maintained in yearly training files.

 iii. If special training needs are identified throughout the year the annual training will address the issues during the training program.
a. Designated Person Accountable for Discharge Prevention [40 CFR 112.7(f)(2)]
 i. The District Manager is the designated person responsible for discharge prevention at the VESSE facility.

b. Discharge Prevention Briefings [40 CFR 112.7(f)(3)]
 i. Annually as part of a regularly scheduled environmental meeting and SPCC review, all operating personnel are instructed in spill prevention and spill management. This training is documented as part of the meeting attendance and includes discussions of all potential spills and appropriate responses should a spill occur.
 ii. A spill briefing to ensure that all personnel are aware of any potential spills precedes any unusual activity that might increase the likelihood of a spill, and is logged accordingly.

c. Security [40 CFR 112.7(g)(1-5)]
 i. During normal business hours Contractors requiring entry to the VESSE facility are required to complete a sign-in log and notify the operator of their arrival. VESSE employees requiring entry to the VESSE facility are required to notify the operator of their arrival before they start their business at the facility. The facility is secured by a chain link fence that remains open from 6:00am until 6:00pm daily. This fence is secured at all other times. The entry fence and parking area are under 24-hr video surveillance by control room operators.
 ii. The containment areas for the turbine oil and gear lubricant are not equipped with flow valves in which the oil could be released outside the containment during storage. During storage, the drums may be equipped with a hand pump to allow access to the oil while the drum is in the containment area.
 iii. Turbine oil and gear lubricant storage transfer equipment is not equipped with starter controls.
 iv. Flow isolation valves are located in the lines to the fuel oil re-circulation pumps and to fuel delivery pumps. These valves are always open since the fuel oil system is constantly in standby mode, when not in operation.
 v. The fuel oil containment area discharge valve shall be locked in the closed position at all times. When necessary, storm water will be checked for any oily sheen and once cleared, can be discharged by gravity to the Storm sewer.
vi. The starter control is not locked since the fuel oil system is continuously in standby when not in operation.

vii. All areas of the plant are lighted adequately. The facility is normally in operation and manned 24-hours per day, seven days per week.

d. Truck Unloading Operations [40 CFR 112.7(h)(1-3)]

i. As outlined in Appendix A of 40 CFR 112, this requirement is not applicable when a commercial self-unloading vehicle enters our site and unloads to our tank. The requirements for the tank truck are governed by the Department of Transportation. Incidental spill amounts, such as from hose uncoupling, are caught in portable containment placed beneath the truck hose connection and in the catchment basin below the tank fill connection. All filling/refueling activities are manned for the duration of the operation.

ii. During chemical delivery/unloading, the facility completes a delivery checklist. The facility operator oversees the complete operation of the delivery process; the facility spill control equipment is available in close proximity of the unloading site. The operator of the delivery vehicle will be advised of the location of the spill containment equipment. In addition, spill containers shall be placed beneath each connection.

iii. The delivery truck wheels are chocked to prevent vehicles from departing before complete disconnection of flexible or fixed chemical transfer lines.

iv. The facility operator is involved with the delivery of the turbine oil and gear lubricant drums and has spill containment equipment available in the event of a spill.

v. The turbine oil and gear lubricant delivery vehicle is turned off and placed in park when unloading drums.

vi. The fuel oil tank is filled via transfer from the bulk tank system, however in the event of an emergency or bulk system failure, tank trucks as can be used to fill this tank as needed. The vendor has been instructed on the initial notification requirements of this plan and must be present at all times during filling operations. As part of the fuel oil unloading procedures the vehicle is inspected for leaks prior to departing the facility.

vii. Facility personnel are present whenever possible to ensure proper unloading procedures are used and to verify the vendor is present at all times during filling operations.
e. Brittle Fracture Evaluation
 i. To date, there have not been any brittle fracture evaluations. However, a brittle fracture evaluation will be performed if the fuel oil storage tank undergoes repairs, alterations, reconstructions or change in service that might affect the risk of a discharge or failure due to fracture or other catastrophe. These tanks shop built, and subject to the regulations associated with that type of unit.

f. Conformance with Additional State requirements
 i. As mentioned earlier in this document, the site complies with the Minnesota Spill bill of 1991, Chapter 15E of the Minnesota Statutes. As such, chemical information is included throughout this document in addition to the oil discharge concerns required by federal regulations.

15.0 SPILL PREVENTION AND COUNTERMEASURE PROCEDURES
 i. Spill prevention and control structures, such as containment structures, are present in oil storage areas and bulk chemical containers at the facility to contain most discharges that could occur. The likelihood of a release is minimized by routine inspections, preventive operating practices such as good maintenance, security measures, and personnel training. However, should a release occur, a protocol has been established to notify appropriate plant management and regulatory agencies, and to respond to such discharges.

 ii. Reporting and response procedures are outlined in the sections that follow. The facility is not required to submit a response plan under 112.20; therefore, the following section provides information and procedures for a person reporting a discharge to the appropriate agencies.

 iii. A description of the “Discharge Response Organization”, as well as reporting and recordkeeping requirements is found in the following paragraphs.

a. Discharge Response Organization
 i. The Discharge Response Coordinator is in charge of all discharge response activities and has the authority and training to mobilize the appropriate personnel and equipment in the event of a discharge. Upon discovery of a discharge, the plant employee(s) will immediately notify the District Manager, who is also the Primary Discharge Response Coordinator.

 ii. If the Primary Discharge Response Coordinator is not available, a pre-defined alternate will be contacted from the list of VES personnel identified in Appendix C to assume the responsibility of coordinating the response measures. The Discharge Response Coordinator will also document the response by completing the Discharge Notification Form provided in Appendix E.
iii. If necessary, the Discharge Response Coordinator (or alternate) will provide notification and follow-up written reports to the appropriate federal, state, and local agencies.

iv. If there is an immediate or actual emergency, the Discharge Response Coordinator has the full authority needed to complete the activities listed in this Plan.

v. The Discharge Response Coordinator will be familiar with aspects of the SPCC Plan, which include the following:
 1. Reporting and response procedures;
 2. Facility operation and activities;
 3. Location and characteristics of petroleum and/or chemical products at the facility; and
 4. Location of discharge response equipment.

b. Notification Requirements
 i. If a discharge poses a threat to human health and/or the environment, the Discharge Response Coordinator will notify the police, fire department or medical assistance, as needed. (See Appendix E Discharge Notification form.)

 ii. Under the Federal SPCC regulations: If any discharge reaches navigable waters, the Storm Water System or the Sanitary Sewer System, the Discharge Response Coordinator will notify the appropriate agencies, Veolia North America corporate personnel and appropriate clean-up contractors as listed in Appendices B and C. The Discharge Response Coordinator will also document the response by completing the Discharge Notification Form provided as Appendix D.

 iii. Under the Minnesota Statutes: If the Discharge Response Coordinator determines the "Incident" satisfies the definition of a "Release" and that the "Release" satisfies the definition of "Threshold Reporting Quantity" the Discharge Response Coordinator will notify the appropriate agencies, Veolia North America corporate personnel and appropriate clean-up contractors as listed in Appendices B and C. The Discharge Response Coordinator will also document the response by completing the Discharge Notification Form provided in Appendix D.

 iv. Contact the Veolia North America corporate personnel in the order listed in Appendix B until at least one person is contacted.

 v. Facility Management must be notified in all instances of discharge or release as identified in b.ii and b.iii above.

 vi. The local or state contacts must be notified if discharged oil or hazardous materials reaches the sanitary sewer or storm-water system and meets the definition of a "Release" and "Threshold Reporting Quantity".

 vii. The National Response Center must be notified if a harmful quantity of oil reaches a sanitary sewer or storm-water system. A harmful quantity is
defined by the United States Environmental Protection Agency (USEPA) in 40 CFR 110 and 112, as a discharge which violates applicable water quality standards and/or one which causes a sheen, film, or discoloration of the water surface or adjoining shorelines. It also includes a discharge that may cause a sludge or emulsion to be deposited beneath the water surface or upon adjoining shorelines. The Discharge Response Coordinator will document the response by completing the Discharge Notification Form provided as Appendix D.

viii. As required by the Minnesota regulations, any discharge that meets the definition of a "Release" and is 5 gallons of petroleum products or more outside the facility buildings must be reported to the MPCA Duty officer even if it does not reach a sanitary or storm-water system.

ix. In accordance with the Minnesota statutes: For a spill that meets the reporting requirements of the Minnesota rules, the facility must report the event as soon as practicable after detection of a release. The owner or operator of the facility that releases any polluting material in excess of a threshold reporting quantity during any 24-hour period shall notify the Minnesota Duty Officer by contacting the MPCA at 1-800-422-0798 or 1-651-649-5451.

c. Reporting, Information & Record Keeping Requirements

i. The Discharge Response Coordinator will be prepared to provide the following information when reporting a discharge:

1. Exact facility name, address and phone number of the facility;
2. Date and time of the discharge;
3. Type of material discharged;
4. An estimate of the quantity of material discharged;
5. The source of the discharge;
6. A description of all affected media; (i.e. soil, water, sewer, etc.)
7. The cause of the discharge;
8. Any damages or injuries caused by the discharge;
9. Any actions being taken to stop, remove and mitigate the effects of the discharge;
10. Whether evacuation is necessary; and
11. Names of individuals/organizations who have also been contacted.

ii. Within 10 days after the release, the owner or operator shall file a written report with the chief of the Department's Waste Management Division outlining the cause of the release, discovery of the release, and the response measures taken or a schedule for completion of measures to be taken, or both, to prevent recurrence of similar releases.
iii. A follow-up written report will be submitted to the USEPA within 60 days if a single discharge exceeds 1,000 gallons or the facility discharges oil in quantities greater than 42 gallons in each of two spill events within a twelve-month period. At a minimum, the written report will contain the information on table 4 below:

<table>
<thead>
<tr>
<th></th>
<th>Minimum Information Required for Reporting Discharges to the USEPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>Facility Name;</td>
</tr>
<tr>
<td>2)</td>
<td>Owner/Operator's Name;</td>
</tr>
<tr>
<td>3)</td>
<td>Facility Location;</td>
</tr>
<tr>
<td>4)</td>
<td>Name and address of registered agent of the owner, if any;</td>
</tr>
<tr>
<td>5)</td>
<td>Maximum facility storage or handling capacity and normal daily throughput;</td>
</tr>
<tr>
<td>6)</td>
<td>Corrective actions and countermeasures taken, including repairs or replacements;</td>
</tr>
<tr>
<td>7)</td>
<td>Facility description, including maps, flow diagrams and topographical maps;</td>
</tr>
<tr>
<td>8)</td>
<td>Cause(s) of such discharge(s), including a failure analysis of the system or subsystem in which failure occurred;</td>
</tr>
<tr>
<td>9)</td>
<td>Additional preventive measures taken to minimize the possibility of reoccurrence;</td>
</tr>
</tbody>
</table>

iv. The Discharge Response Coordinator will keep a log of activities during the discharge event including the quantity of oil discharged, recovered, and disposed of; a general assessment of environmental damage, and any other notable events which may occur during the discharge and subsequent response activities. Upon completion of all activities, the Discharge Response Coordinator will complete a Spill or Release Report and prepare a summary of the incident for entry into the SPCC Plan. Copies of the completed Spill or Release Report will be submitted to the Environmental Compliance Specialist or other designated personnel and maintained in the facility central files.

16.0 SPILL (DISCHARGE) RESPONSE PROCEDURES [40 CFR 112.7(A)(3)(IV) AND 112.7(A)(5)]

Response Procedures

a. The employee(s) discovering the discharge will immediately stop work and, if appropriate, turn off any equipment in the affected area.

b. The employee(s) will report the discharge to the District Manager or Control Room and evacuate to a safe area, if necessary. (The District Manager is also the Primary Discharge Response Coordinator.)
c. If the Primary Coordinator is not available, the employee(s) will report the discharge to one of the listed Alternate Discharge Response Coordinators.

d. If the Discharge Response Coordinator or alternate is not available (nights, weekends, holidays), the lead operator or other appropriately designated person will assume the role of the Discharge Response Coordinator.

e. The Discharge Response Coordinator will designate an assistant, if necessary.

f. The Discharge Response Coordinator or designee will proceed to the discharge area and set up a perimeter. If necessary, assistance from the outside agencies will be requested.

g. Upon arrival, the Discharge Response Coordinator will assess the nature and extent of the release and the potential threat to human health and/or the environment.

h. As necessary, the Discharge Response Coordinator will evacuate personnel, notify local emergency authorities (911), and advise if area control or evacuation of the surrounding area is recommended or if medical assistance is required.

i. The Discharge Response Coordinator will take immediate action to control the discharge and to contain it within the Facility property line. A summary of discharge control equipment is provided in Table 5.

j. Should outside assistance be required to control the discharge, the Discharge Response Coordinator will contact the local emergency services at (911).

Table 5
Summary of Discharge Control Equipment

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Equipment</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Radio</td>
<td>On Operator / Maintenance Individuals</td>
</tr>
<tr>
<td>3</td>
<td>Telephone</td>
<td>Control Room, Water lab, EI&C shop</td>
</tr>
<tr>
<td>10 Boxes</td>
<td>Absorbents</td>
<td>EI&C Shop</td>
</tr>
<tr>
<td>12</td>
<td>Spill control kits</td>
<td>At each Containment Area</td>
</tr>
<tr>
<td>5</td>
<td>Rakes and Shovels</td>
<td>Ash unloading area/ Shop</td>
</tr>
<tr>
<td>2</td>
<td>Portable pumps</td>
<td>Shop/ Parts room</td>
</tr>
</tbody>
</table>

Additional equipment which could be used to cleanup spilled or released material includes shovels, brooms, squeegees, large polyethylene bags, empty barrels, garden and service water hoses with sprayers, work gloves, front end loaders, and floor sweeper. Absorbent material is kept in the areas of the facility where they will likely be needed.

k. Should the discharge reach the storm sewer inlets, the Discharge Response Coordinator will authorize further action to stop the migration of the discharged material(s).
l. Upon containment and control of the release, Coordinator will direct the clean-up of the area. This will include a return of all response equipment and materials to their proper location and status.

m. To the extent feasible, the discharged material will be recovered, reclaimed and/or properly disposed of. Materials such as absorbents and contaminated soil and water will be disposed of according to local, state and federal regulations.

n. The cleanup contractors listed in Appendix B or those otherwise authorized by management will assist the facility in the proper disposal of the recovered material in accordance with applicable legal requirements.

o. The Discharge Response Coordinator or the alternate is also responsible for fulfilling the notification and recording requirements specified in Section 15.0.b.i-ix and 15.0.c.i.iv above, and the Follow-up Actions listed below.

Follow Up Actions

a. Clean and return all response equipment and materials to their proper location and status.

b. Review the discharge event, determine the cause of the release and take actions to prevent a recurrence under similar circumstances.

c. Complete any remaining discharge notification and reporting requirements from Sections 15.0.b.i-ix and 15.0.c.i.iv above.

d. Ensure spill response consumables (berms, pillows, bags, sorbent, etc.) are restocked accordingly.

17.0 **Discharge Prevention Measures**

Drainage Controls

a. The turbine oil and gear lubricant storage area is not equipped with a drainage system for the diked area. Spilled material released inside dike will be removed manually.

b. The storm water drainage from the fuel oil tank area will be collected in a segregated holding area, and discharged to either the process water system or the sanitary sewer system based on visual observations of condition.

c. The holding area will be equipped with isolation valves to prevent storm water from entering the sewer system.

d. The storm water will be evaluated for contaminants prior to discharge. If an oily sheen is present, the operator will remove the sheen or oil accumulation from the rainwater with absorbent material before it is discharged. (See Appendix F1 and F2)
e. Onsite personnel will supervise the discharge of the storm water drainage. Once all the storm water has been discharged the valve in the sump will be locked closed (sealed).

f. Any drainage of water from the containment area will be documented on the Dike Drainage Log. Dike Drainage Log is maintained in the control room, each occurrence of drainage is logged with Date, Time, Dike area drained, Gallons drained and Operators initials.

Valves Used on Diked Storage Areas
a. The turbine oil and gear lubricant drum storage areas and the Fire water pump retention area, are not equipped with valves for releasing liquid from the areas.

b. The fuel oil containment area drainage sump will have either a gate or globe valve in the normally closed position. The storm water runoff will be either discharged to the process water system or the sanitary sewer after evaluation for contaminants as identified in 17.0 Drainage Controls, above.

c. Any drainage of water from the containment area will be documented on the Dike Drainage Log. The log is kept in the Control Room, each occurrence of drainage is logged with Date, Time, Dike area drained, Gallons drained and Operators initials.

Plant Drainage Systems from Areas without Dikes
a. Outside The Facility
 i. The only non-diked area exposed to precipitation and possible periodic heavy flow conditions would be the unloading area for the chemical bulk storage tank(s). The unloading area is on the south side of the facility outside the overhead door located in the main parking lot. The drainage for this location slopes to a drain that empties to the secondary containment for the acid tank inside the facility. This water is tested for Ph and then discharged to the sanitary system. The parking area retention basin adjacent to the chemical unloading area is limited in size and therefore is reviewed for rainwater or other spilled materials prior to each chemical unloading event. A normally locked shut valve is located on the South side of the building near the access road, this valve is opened during a rain event once it has been determined that no chemical spill has occurred.
 ii. During delivery of the chemicals, PPE, spill capture, cleanup & absorbent material is available for use by the delivery personnel.

b. Inside The Facility
 i. The turbine oil and gear lubricant storage area is located inside the building unexposed to precipitation. If material is released outside of the storage area the oil would be contained inside the building. In this event the discharge could reach the facility sanitary sewer system via the floor drains located inside the facility.
ii. Discharges from piping systems within the building could reach the facility sanitary sewer system via the floor drains located inside the facility.

iii. In the event of a discharge inside the building, the operator(s) will absorb and cleanup the sheen, free oil or oily accumulation from the floor and water with absorbent material before any water is discharged. If further cleaning is necessary, a surfactant cleaning solution will be employed, and any residual water will be discharged to the sanitary sewer. Contaminated absorbent material will be disposed of appropriately.

c. Final Discharge of Drainage (Diversion Systems)

i. The only potential discharge to storm water systems from the facility is the drainage from the bulk fuel oil retention basin and the chemical unloading area, as previously described.

ii. There are no drainage treatment facilities on site. As such, this section is not applicable.

Bulk Storage Containers

a. Bulk storage containers, listed in Table 1, are constructed of appropriate materials for the stored contents and conditions of storage.

b. Secondary containment is provided for bulk storage containers as listed on Table 1. The containment provided for each storage container is sufficient volume to contain the volume of each container. The freeboard available for the fuel oil storage tank is well in excess of the precipitation associated with a 25 year, 24-hour storm event. The concrete containment walls are adequate to withstand the static weight of fuel oil in case of a failure of the tank.

Dike Area, Inspection and Drainage of Rainwater

a. The only containment areas subject to rainwater collection is the fuel oil storage area and the chemical unloading basin. The facility shall complete the Dike Drainage Log form before any discharge will be performed. The discharge frequency will be determined by the amount of rainfall collected in the identified areas.

b. In the event that oil sheen or chemical contamination is present, the facility shall remove the sheen or oil accumulation and/or the chemical material from the rainwater with appropriate absorbent material before it is discharged. If further cleaning is necessary, a surfactant cleaning solution will be employed, and any residual drainage will be discharged to the sanitary sewer. Contaminated absorbent material will be disposed of appropriately. If no oil sheen or chemical residue is present, this drainage will be discharged to either the process water system or the sanitary sewer system. Onsite personnel will supervise the discharge of storm water runoff. Once all the storm water has been discharged
the valve will be locked closed (sealed). Any drainage of water from the containment area will be documented on the Dike Drainage Log.

Corrosion Protection of Buried & Partially Buried Metallic Storage Tanks

a. There are no buried metallic storage tanks at the facility; therefore, this section is not applicable.

b. There are no partially buried metallic storage tanks at the facility; therefore, this section is not applicable.

Periodic Integrity Testing of Aboveground Containers

a. Integrity testing is required for bulk storage containers. The following paragraphs describe the testing program that is applicable to the Facility's bulk storage containers. Inspection and/or testing of these containers will be documented in the Operator's Daily Log Book, the PM Database and on the Oil Storage Areas & Tanks Inspection/Testing Log provided in Appendix A.

b. Large Tanks: The fuel oil storage tank will receive integrity testing in addition to visual inspection.

 i. All tank maintenance and PM records are maintained with the maintenance department and/or within the PM database on site. Weekly inspections of all tanks are completed using the PM database

 ii. In accordance with American Petroleum Institute (API) Standard 653 criteria, ultrasonic thickness (UT) testing of the tank shell shall be conducted on a 5-year interval. The interval shall only be increased based upon the successful results of two (2) UT surveys, with the increased interval as established based upon API 653 criteria.

 iii. UT testing shall be performed at eight (8) vertical lines equally spaced around the tank. Each vertical line shall have readings taken at the tank base and at vertical intervals of one (1) foot for the first eight (8) feet and at four (4) foot intervals above the first eight (8) feet to the top of the tank. The tank roof shall have several UT readings taken from each of the eight (8) locations extending in toward the top center.

c. An internal inspection shall be conducted after twenty (20) years of operation. The internal inspection shall include a tank cleaning, and visual inspection of the tank bottom for settlement and obvious signs of corrosion of the shell, bottom and roof.

 i. UT thickness readings of the tank bottom shall be taken on a two (2) foot grid and at two (2) foot intervals around the outer edge of the tank bottom to confirm/establish the tank bottom corrosion rate.

 ii. Subsequent internal inspection intervals shall be based upon API 653 criteria and determined by the inspection results such that the bottom will not have corroded to less than 0.1 inches at the next inspection.
iii. This interval shall not exceed twenty (20) years. Once the tank bottom thickness reaches 0.1 inches, a decision will be made to either replace the whole tank, line the bottom, add cathodic protection, replace the tank bottom with a new bottom, and add a release prevention barrier or some combination of the above, considering the future service and operating environment of the tank.

d. As an alternative to the full internal inspection, the facility can obtain an electronic determination of tank bottom condition and corresponding UT survey with remote controlled crawler device by a certified contractor. The scope of the survey shall be as defined above. The contractor shall confirm that their process meets the criteria defined by API 653. This effort shall be supplemented with sampling of oil from the bottom of the tank to confirm no accumulation of sludge or condensate. The results of the survey shall determine the next scheduled inspection frequency.

e. Generally, any time that major repairs are made to the fuel oil storage tank (removal or replacing annular plate ring, jacking the container shell, installation of a 12" or larger nozzle, etc.) additional integrity testing shall be performed.

f. Small Shop-Fabricated Tanks: The turbine oil and gear lubricant 55-gallon drums along with water chemistry bulk containers, and the sodium hydroxide and sulfuric acid bulk containers will be visually inspected at least monthly, but no integrity testing will be performed.

g. Electrical, operating and manufacturing equipment are not bulk storage containers, and as such are not subject to integrity test requirements. However, visual inspection of this equipment will be conducted at least monthly.

Good Engineering Practice - Alarm Systems

a. There is digital readout of tank level at the boiler control panels. A high tank level audible alarm is provided at the tank fill station in the event a truck is needed to fill the tank. This function is OOC. Tank level and fuel oil delivery are verified prior to transfer, to ensure adequate capacity.

Visible Oil Leak Corrections from Container Seams and Gaskets

a. As part of the monthly aboveground piping inspection and during routine facility walk downs any leaks from seams, gaskets, pumps, rivets or bolts will be identified and promptly corrected. Any oil accumulated will be collected and properly disposed as soon as it is identified.

Observation of Wastewater Treatment Facilities for Oil-Contaminated Discharges

a. There are no wastewater treatment facilities in use at this facility; therefore, this section is not applicable.
Appropriate Positioning of Mobile or Portable Oil Storage Containers

a. There are no mobile oil storage containers in use at this facility; therefore, this section is not applicable.

18.0 FACILITY TRANSFER OPERATIONS

a. Buried piping is not used for the transfer of oil products at this facility; However oil is transferred through an underground tunnel that connect the oil storage facility at the coal storage facility with the South East plant’s Day tank.

b. The facility terminal connection to the fuel oil day tank fill line is isolated/closed, except during filling/transfer operations.

c. Piping supports were installed in accordance with applicable codes at the time of installation. Piping supports are inspected as part of the monthly piping system inspections to confirm system integrity.

d. Aboveground piping and valves will be visually inspected at least monthly to confirm system integrity. In addition to identifying any leaks from piping, joints or valves, observations will include determination of interference with other piping and equipment, excessive vibration, deflection or sag, and the general condition of supports, hangers and guides. The proper position of system valves will also be confirmed. Any anomalies will be promptly corrected.

e. Underground or tunnel piping and valves will be visually inspected at least quarterly to confirm system integrity. In addition to identifying any leaks from piping, joints or valves, observations will include determination of interference with other piping and equipment, excessive vibration, deflection or sag, and the general condition of supports, hangers and guides. The proper position of system valves will also be confirmed. Any anomalies will be promptly corrected.

19.0 SUBSTANTIAL HARM CRITERIA CHECKLIST

a. The federal regulations provide an "Applicability of Substantial Harm Criteria Checklist" in 40 CFR 112.20(f)(1). These requirements have been placed in a checklist format. This checklist and an associated certification are found in Section 7.0 of this SPCC Plan. Based upon the completion of this checklist, it has been found that the facility is not required to prepare a facility response plan pursuant to 112.20(e).
FIGURE 2A
Veolia North America South East Plant Heating Operation Facility Surface Topographical Drainage picture, and drawings of Oil, “Other Polluting Material” and Significant Material Storage
FIGURE 1A - SE Plant Basement Containment and Spill Kit Location
FIGURE 1-B SE Plant Operating Floor Containment and Spill Kit Location
Appendix A

OIL STORAGE AREAS & TANKS – INSPECTION/TESTING LOG

Task Report (Full List)

Foster Wheeler Southeast Plant

<table>
<thead>
<tr>
<th>Equipment No.</th>
<th>Equipment Description</th>
<th>Location</th>
<th>Sub-location 1</th>
<th>Sub-location 2</th>
<th>Sub-location 3</th>
<th>Date Last Performed</th>
<th>Next Due Date</th>
<th>Tenant</th>
</tr>
</thead>
<tbody>
<tr>
<td>FO-P115A</td>
<td>SYSTEM PRIMARY FUEL OIL PUMP A</td>
<td>SE PLANT</td>
<td>059</td>
<td>CRIB</td>
<td></td>
<td>12/3/2015</td>
<td>12/28/2015</td>
<td></td>
</tr>
<tr>
<td>FO-P118A</td>
<td>CUFUEL OIL TRANSFER PUMP #1</td>
<td>COAL UNLOADING</td>
<td></td>
<td>BSMT</td>
<td></td>
<td>12/3/2015</td>
<td>12/28/2015</td>
<td></td>
</tr>
<tr>
<td>FO-P118B</td>
<td>CUFUEL OIL TRANSFER PUMP #2</td>
<td>COAL UNLOADING</td>
<td></td>
<td>BSMT</td>
<td></td>
<td>12/3/2015</td>
<td>12/28/2015</td>
<td></td>
</tr>
<tr>
<td>FO-TK112A</td>
<td>LARGE (500,000 GALLON) OIL STORAGE TANK</td>
<td>COAL UNLOADING</td>
<td>1301</td>
<td></td>
<td></td>
<td>12/3/2015</td>
<td>12/28/2015</td>
<td></td>
</tr>
<tr>
<td>FO-TK112B</td>
<td>SMALL (225,000 GALLON) OIL STORAGE TANK</td>
<td>COAL UNLOADING</td>
<td>1301</td>
<td></td>
<td></td>
<td>12/3/2015</td>
<td>12/28/2015</td>
<td></td>
</tr>
</tbody>
</table>

Perform Every:
- 2.00 Week(s)

Schedule Type:
- Duplicates

Task Duration:
- 677.00

No. of Times Completed:
- 677.00

Down Time:
- Must Be Down

Tenant:
- No

41
Task Report (Full List)

FOSTER WHEELER SOUTHEAST PLANT

12/17/2015

Task Instructions

Instruction Code: TK10

Date Last Edited: 12/17/2015

BI-WEEKLY INSPECTION OF FACILITY TANKS, CONTAINMENT AREAS, AND FUEL DELIVERY SYSTEMS.
PERFORM VISUAL INSPECTION OF FACILITY TANKS CHECKING FOR SIGNS OF LEAKAGE.
INSPECT CONTAINMENT AREAS FOR SIGNS OF LEAKS OR INTEGRITY ISSUES.
INSPECT FUEL OIL PIPING FOR LEAKS OR ANY OTHER ISSUES.
REPORT IF ANYTHING IS FOUND TO PLANT CHIEF.

(FO-TK112A) (300,000 GALLON TANK) CLEANED AND INSPECTED (NOV-2015)
FUEL LEVEL IN HEIGHT & GALLONS

(FO-TK112B) (225,000 GAL TANK) CLEANED AND INSPECTED (OCT-2015)
FUEL LEVEL IN HEIGHT & GALLONS

(FO-TK115) (200 GALLON DIESEL FUEL STORAGE TANK @ COAL UNLOADING)
FUEL LEVEL IN HEIGHT

INSPECT C.U. F.O. TRANSFER PUMPS

FO-P118A _____ FO-P118B _____
VERIFY F.O. CONTAINMENT AREA & C.U. PUMP IS WORKING

(FO-TK13) (20,000 GAL DAY TANK @ SE)

FUEL LEVEL IN HEIGHT & GALLONS

(FO-TK14) (300 GALLON DIESEL FUEL STORAGE TANK @ SE)

FUEL LEVEL IN HEIGHT

S.R.R. BASEMENT:

[D-106] (1000 GAL SULFURIC ACID STORAGE TANK)

CF-P107A _______ FO-P107B _______

[D-107] (1000 GAL CAUSTIC STORAGE TANK) SODIUM HYDROXIDE

CF-P109A _______ CF-P109B _______

WASTE OIL CONTAINMENT AREA

HAZARDOUS WASTE CONTAINMENT AREA

(600 GAL) TRANSFORMER OIL CONTAINMENT AREA

(105 GAL NALCO 72350 TANK) _______

(105 GAL NALCO 352 TANK) _______

(50 GAL NALCO 72350/352 TANK) _______

(200 GAL NALCO 1700 TANK) _______

(400 GAL NALCO 22300 TANK) _______

("3" BATCH TANKS 300 GAL) _______

(110 GAL NALCO 2895 TANK) _______

(65 GAL NALCO 8735 TANK) _______

N.R.R. BASEMENT:

(250 GAL DIESEL FIRE PUMP F.O. TANK) _______

OIL STORAGE CONTAINMENT AREA

(1300 GAL T/G 101 L.O. SUMP) _______

N.R.R. MAIN:

INSPECT S.E. PLANT F.O. PUMPS

FO-P115A _______ FO-P115B _______

(211 GAL) TRANSFORMER OIL CONTAINMENT AREA (B VAULT) _______

C.W. MEZZ:

(30 GAL NALCO 7330 TANK) _______

(75 GAL NALCO 3D1265 TANK) _______

(105 GAL NALCO ST-70 TANK) _______

(30 GAL NALCO 1700 TANK (NO CONTAINMENT) _______
Task Report (Full List)

12/17/2015

FOSTER WHEELER SOUTHEAST PLANT

Page 4

("3" 10 GAL STORAGE TUBS WITH NALCO 1700 (5 GAL JUGS)

VERIFY ALL CONTAINMENT DRAIN VALVES ARE SHUT.

NOTE ANYTHING UNUSUAL.
Appendix B

EMERGENCY CONTACT LIST

Regulatory Agencies

<table>
<thead>
<tr>
<th>Regulatory Agencies</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPCA (Minnesota Pollution Control Agency) (Duty Officer - After Hours)</td>
<td>800-422-0798</td>
</tr>
<tr>
<td>MPCA – Minneapolis District Office (During Normal Business Hours)</td>
<td>800-422-0798</td>
</tr>
<tr>
<td>MPCA - Minneapolis - Surface Water Quality Division – Storm water (During Normal Business Hours)</td>
<td>800-422-0798</td>
</tr>
<tr>
<td>EPA - National Response Center (US Coast Guard/EPA)</td>
<td>800-424-8802</td>
</tr>
<tr>
<td>USEPA ~ SPCC Hotline (For Spill Related Questions)</td>
<td>800-424-9346</td>
</tr>
<tr>
<td>Hennepin County Health Department</td>
<td>612-543-5200</td>
</tr>
<tr>
<td>(LEPC) Minneapolis Emergency Planning Committee</td>
<td>612-596-0250or 911</td>
</tr>
<tr>
<td>Minneapolis Fire Department</td>
<td>(612) 673-2890 or 911</td>
</tr>
<tr>
<td>Minneapolis Police Department</td>
<td>(612) 673-3000 or 911</td>
</tr>
<tr>
<td>Minneapolis Wastewater Treatment Facility (MWTF)</td>
<td>(612) 673-2405 or 311</td>
</tr>
<tr>
<td>Minneapolis Storm-water Division –</td>
<td>(612) 673-2405 or 311</td>
</tr>
</tbody>
</table>
Appendix C

EMERGENCY CONTACT LIST

Veolia Energy North America – Central Region Management

<table>
<thead>
<tr>
<th>Title/Name</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Vice President, Central Region</td>
<td>Cell: 616-308-8037</td>
</tr>
<tr>
<td>Chuck Melcher</td>
<td>Office: 312-552-2881</td>
</tr>
<tr>
<td></td>
<td>Home: 616-682-9788</td>
</tr>
<tr>
<td>Central Region Director of EH&S, Michael Stoppa</td>
<td>Cell: 816-799-4807</td>
</tr>
<tr>
<td></td>
<td>Office: 816-889-4976</td>
</tr>
<tr>
<td></td>
<td>Home: 816-229-1426</td>
</tr>
<tr>
<td>District Manager Josh Svejcar</td>
<td>Office: 612-599-6927</td>
</tr>
<tr>
<td></td>
<td>Cell: 612-599-6927</td>
</tr>
<tr>
<td></td>
<td>Home: 715-808-3430</td>
</tr>
</tbody>
</table>

IF UNABLE TO REACH EITHER OF THE ABOVE, THEN CONTACT:

<table>
<thead>
<tr>
<th>Title/Name</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Regional Engineer, Gary Wilkinson</td>
<td>Cell: 630-202-0065</td>
</tr>
<tr>
<td></td>
<td>Office: 630-904-5927</td>
</tr>
<tr>
<td></td>
<td>Home: 630-904-5917</td>
</tr>
<tr>
<td>Corporate Vice President EH&S, Kevin Biernacki</td>
<td>Cell: 508-962-1722</td>
</tr>
<tr>
<td></td>
<td>Office: 617-691-1429</td>
</tr>
<tr>
<td></td>
<td>Home: 508-363-4695</td>
</tr>
<tr>
<td>Chief Operating Officer, Bill DiCroce</td>
<td>Cell: 857-334-4427</td>
</tr>
<tr>
<td></td>
<td>Office: 617-849-6650</td>
</tr>
<tr>
<td></td>
<td>Home: 508-457-4918</td>
</tr>
</tbody>
</table>

Crisis Center (Appletree) 866-274-3370

Qualified Pollution Incident Clean-Up Contractors

<table>
<thead>
<tr>
<th>Contractors</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veolia Environmental</td>
<td>1-800-668-4005</td>
</tr>
<tr>
<td>Safety-Kleen</td>
<td>616-453-7922</td>
</tr>
<tr>
<td>K & D Grand Rapids Industrial Cleaning</td>
<td>616-784-8900</td>
</tr>
<tr>
<td>Valley City Environmental</td>
<td>616-235-1500</td>
</tr>
</tbody>
</table>
Appendix D
SPILL RESPONSE PROCEDURES FLOW CHART

Spill or Release identified by Employees or Contractors

Assess Personal Safety and Safety of others

Notify Control Room Via 2-way radio, Gai-Tronic comms or phone

Identify product

Minor Spill Under Guideline Values
Stop Spill if safely possible
Ensure spill does not enter water bodies
Keep track of spill data and report to EH&S
Forward Reports and Notifications to proper VENA and UMN Personal

Track All Spill and Cleanup information through VENA

Major Spill Over Guideline Values
Stop Spill if safely possible
Ensure spill does not enter water bodies
Implement SPCC Plan Alert proper VENA and UMN Personal
Keep track of spill data and report to EH&S
Ensure Regulatory Agency notification within required
Appendix E
Discharge Notification Form

Veolia Discharge Notification

SECTION A. Site Information
Site name:
Street Address:
Case Tracking Number(s):

SECTION B. DISCHARGE BEING REPORTED WITH THIS SUBMISSION
Incident Number/Com. Center Number for the discharge being reported with this submission:

Is there an existing remedial case at the site?

SECTION C. DESCRIPTION OF DISCHARGE
Date Discharge Occurred: Date MPCA called:
Media Contaminated:
Soil Groundwater Surface Water Receiving Water: Historic Fill only

Description of Discharge:

Confirmed Discharge Notification
SECTION D. PERSON RESPONSIBLE FOR CONDUCTING THE REMEDIATION INFORMATION AND CERTIFICATION

Full Legal Name of the Person Responsible for Conducting the Remediation:

Representative First Name:

Representative Last Name:

Title:

Phone Number: Ext: Fax:

Mailing Address:

City/Town: State: Zip Code:

Email Address:

I certify under penalty of law that I have personally examined and am familiar with the information submitted herein, including all attached documents, and that based on my inquiry of those individuals immediately responsible for obtaining the information, to the best of my knowledge, I believe that the submitted information is true, accurate and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate or incomplete information and that I am committing a crime of the fourth degree if I make a written false statement which I do not believe to be true. I am also aware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

Signature:

Date:

Name/Title:
Appendix F1
Evaluation of Liquids in Secondary Containment or Other Sump Areas

This document provides an overview of the state environmental regulations and EHS guidelines for evaluating liquids discovered in secondary containment and other sump areas at University projects, sites, and buildings.

<table>
<thead>
<tr>
<th>Action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visually determine if the liquid has any floating layers or portions.</td>
</tr>
<tr>
<td>- If yes, determine whether there is free petroleum or other stored product present. If yes, estimate volume of free product and report to EHS staff as a spill.</td>
</tr>
<tr>
<td>- If safe to do so, recover free product using adsorbent products (pads, booms, socks), storing spent absorbent in a closed, labeled container for Chemical Waste Program disposal (see Step 6, below).</td>
</tr>
<tr>
<td>- Collect a sample on the remaining liquid, and analyze as described by the flow chart below. Do not discharge liquid.</td>
</tr>
<tr>
<td>- If no, continue to Step 2.</td>
</tr>
<tr>
<td>Visually determine if the liquid has a sheen, odor or color.</td>
</tr>
<tr>
<td>- If yes, collect a sample on the liquid, and analyze as described by the flow chart below. Do not discharge liquid.</td>
</tr>
<tr>
<td>- If no, continue to Step 3.</td>
</tr>
<tr>
<td>Visually determine if there are any floating or settled solids in the liquid.</td>
</tr>
<tr>
<td>- If there are any floating solids, remove solids and dispose in solid waste.</td>
</tr>
<tr>
<td>- If there are any settled solids, avoid disruption/suction of solids when removing liquid portion by keeping suction inlet above the bottom of the basin and/or using a suction sock over the inlet. Do not discharge solids with the liquid portion.</td>
</tr>
<tr>
<td>- Continue to Step 4 after accounting for solids.</td>
</tr>
<tr>
<td>Discharge “clean” liquids to vegetated area or to a storm sewer drainage area, if vegetation is not available.</td>
</tr>
<tr>
<td>- If “no” to steps 1 and 2, and solids are managed as described in step 3, the liquid is considered “clean”.</td>
</tr>
<tr>
<td>- When pumping liquids, ensure that the pump inlet remains at the top of the liquid or that the inlet is covered with mesh or filter sock to avoid discharge of solids.</td>
</tr>
<tr>
<td>- Outlet should be to a vegetated area, if possible, with energy dissipation. If vegetation is unavailable, discharge only with erosion prevention and energy dissipation measures in place. Consult with EHS staff for site specific ideas for erosion prevention and/or energy dissipation measures.</td>
</tr>
<tr>
<td>- If draining from a containment plug hole, be sure that solids do not leave containment, and that the drain is closed after use.</td>
</tr>
</tbody>
</table>
Analyze liquids that are not “clean” to determine proper management.

- If the containment area has limited freeboard available and/or is in danger of overtopping, move liquid to a covered, closed and labeled container until analysis is completed and evaluated.
- The following parameters should be analyzed using 40 CFR 136 methods, unless otherwise excepted as shown below, where there is **reasonable potential** for the pollutant to be present:
 - VOCs
 - Alt method for benzene, toluene, ethylbenzene: Method 602, 624 or 1624, or EPA 5030/8015 or 5030/8240.
 - Alt method for xylenes: Method 8240 or WI method
 - GRO/DRO: WI method
 - PAHs
 - Nitrate-N, Ammonia
 - Total P
 - Total Chlorides

Evaluate sample results.

- Samples representing liquids where all analytes are non-detectable (ND) are considered to be “clean”. These liquids can be managed as described in step 4, above.
 - Maintain test results, discharge date, location and duration with other EHS records.
- Samples representing liquids where any analyte value is above the detection level is not considered “clean”. **Do not discharge this liquid to vegetation or to storm sewer.**
 - Provide sample results and a volume estimate to EHS staff, and consult about disposal requirements.
 - In cases with limited pollutant level and/or volume, liquids may be able to be discharged to the sanitary sewer. A letter of no action, or a single-use discharge permit from MCES may be required.
 - In cases with elevated pollutant levels, the liquid may be required to be managed by the Chemical Waste Program (see Step 7, below).
 - Maintain test results and other relevant disposal information with other EHS records.

Managed collected wastes timely.

- For collected wastes that cannot be discharged: move within 30 days of fill date to central accumulation area; check with Chemical Waste Program for time allowed in central accumulation area (time varies).
 - Contact Chemical Waste Program at (612) 626-1604 or hazwaste@tc.umn.edu to make arrangements to ship waste.
Appendix F2
Evaluation of Liquids in Secondary Containment or Other Sump Areas Flow Chart

1. Liquid is identified in a secondary containment or other sump area.

2. Does liquid have any floating liquids?
 - Yes: Continue with the next step.
 - No: Go to the next decision point.

3. Does liquid have a sheen?
 - Yes: Continue with the next step.
 - No: Go to the next decision point.

4. Is liquid clear, without any odor or color?
 - Yes: Continue with the next step.
 - No: Remove debris from liquid and dispose in solid waste.

5. Does liquid have any floating solids?
 - Yes: Continue with the next step.
 - No: Go to the next decision point.

6. Liquid is free of petroleum or stored product?
 - Yes: Take sample of liquid and analyze for pollutants.
 - No: Go to the next decision point.

7. Analyze sample for pollutants with 'reasonable' potential using EHS list and sampling methods.

8. Are all analytes non-detectable?
 - Yes: Determine management reqts with EHS.
 - No: Go to the next decision point.

9. "Clean" liquid may be discharged to a vegetated area, if available, or storm sewer with energy dissipation or erosion protection.

Additional Notes:
(1) Report as a spill to EHS.
(2) Remove free liquid if safe using absorbent pad or skimming.
(3) Collect pads and skimmed fluids for disposal as chemical waste.
(4) Collect sample on lower fraction.

Are all analytes non-detectable?
- Yes: Determine management reqts with EHS.
- No: Go to the next decision point.